×

Risk classification in life and health insurance: extension to continuous covariates. (English) Zbl 1416.91170

Summary: This short note supplements the paper by S. Gschlössl et al. [“Risk classification in life insurance: methodology and case study”, ibid. 1, No. 1, 23–41 (2011; doi:10.1007/s13385-011-0028-y)] with an efficient method allowing actuaries to include continuous covariates in their life tables, such as the sum insured for instance. Compared to the classical approach based on grouped data adopted in the majority of actuarial mortality studies, individual observations recorded at the policy level are included in the Poisson regression model. The proposed procedure avoids any preliminary, subjective banding of the range of continuous covariates that may bias the resulting life tables. The approach is illustrated on a numerical example demonstrating its advantages when individual mortality data are available.

MSC:

91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics
Full Text: DOI

References:

[1] Brouhns, N; Denuit, M; Vermunt, JK, A Poisson log-bilinear approach to the construction of projected life tables, Insur Math Econ, 31, 373-393, (2002) · Zbl 1074.62524 · doi:10.1016/S0167-6687(02)00185-3
[2] Brown, RL; McDaid, J, Factors affecting retirement mortality, N Am Actuar J, 7, 24-43, (2003) · Zbl 1084.62522 · doi:10.1080/10920277.2003.10596083
[3] Denuit, M; Lang, S, Nonlife ratemaking with Bayesian gams, Insur Math Econ, 35, 627-647, (2004) · Zbl 1070.62095 · doi:10.1016/j.insmatheco.2004.08.001
[4] Fong, JH, Beyond age and sex: enhancing annuity pricing, Geneva Risk Insur Rev, 40, 133-170, (2015) · doi:10.1057/grir.2014.12
[5] Glschössl, S; Schoenmaekers, P; Denuit, M, Risk classification in life insurance: methodology and case study, Eur Actuar J, 1, 23-41, (2011) · doi:10.1007/s13385-011-0028-y
[6] Guibert, Q; Planchet, F, Construction de lois d’expérience en présence d’évènements concurrents: application à l’estimation des lois d’incidence d’un contrat dépendance, Bulletin Français d’Actuariat, 14, 5-28, (2014)
[7] Haberman, S; Renshaw, AE, Generalised linear models and excess mortality from peptic ulcers, Insur Math Econ, 9, 21-32, (1990) · doi:10.1016/0167-6687(90)90012-3
[8] Kwon, HS; Jones, BL, The impact of the determinants of mortality on life insurance and annuities, Insur Math Econ, 38, 271-288, (2006) · Zbl 1159.91409 · doi:10.1016/j.insmatheco.2005.08.007
[9] Klein, N; Denuit, M; Lang, S; Kneib, Th, Nonlife ratemaking and risk management with Bayesian additive models for location, scale and shape, Insur Math Econ, 55, 225-249, (2014) · Zbl 1296.62089 · doi:10.1016/j.insmatheco.2014.02.001
[10] Kuhn M, Johnson K (2013) Applied predictive modelling. Springer, New York · Zbl 1306.62014 · doi:10.1007/978-1-4614-6849-3
[11] Renshaw, AE, Modelling excess mortality using GLIM, J Inst Actuar, 115, 299-315, (1988) · doi:10.1017/S0020268100042682
[12] Renshaw, AE, Actuarial graduation practice and generalized linear and non-linear models, J Inst Actuar, 118, 295-312, (1991) · doi:10.1017/S0020268100019454
[13] Tomas, J; Planchet, F, Constructing entity specific projected mortality table: adjustment to a reference, Eur Actuar J, 4, 247-279, (2014) · Zbl 1329.91078 · doi:10.1007/s13385-014-0095-y
[14] Wood SN (2017) Generalized additive models: an introduction with R, 2nd edn. CRC Press, Boca Raton · Zbl 1368.62004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.