×

Fractional calculus: D’où venons-nous? Que sommes-nous? Où allons-nous? (Contributions to Round Table Discussion held at ICFDA 2016). (English) Zbl 1351.26017

Summary: Discussions under this title, inspired by the famous Gauguin painting, were held during a Round Table in frames of the International Conference “Fractional Differentiation and Applications” (ICFDA ’16) held in Novi Sad (Serbia), 18–20 July 2016, http://www.icfda16.com/public/.
Along with the presentations made during this Round Table, we include here some contributions by the participants sent afterwards and also by few colleagues planning but failed to attend. The intention of these discussions was to continue the useful traditions from the first conferences on Fractional Calculus (FC) topics, to pose open problems, challenging hypotheses and questions “where to go”, “how to save and improve the prestige of FC”, to share opinions and try to find ways to resolve them.

MSC:

26A33 Fractional derivatives and integrals
01A67 Future perspectives in mathematics
34A08 Fractional ordinary differential equations
35R11 Fractional partial differential equations
60G22 Fractional processes, including fractional Brownian motion

Software:

ML
Full Text: DOI

References:

[1] A. Ahmadian, S. Salahshour, D. Baleanu, H. Amirkhani, R. Yunus, Tau method for the numerical solution of a fuzzy fractional kinetic model and its application to the oil palm frond as a promising source of xylose. J. of Computational Physics294 (2015), 562-584.; Ahmadian, A.; Salahshour, S.; Baleanu, D.; Amirkhani, H.; Yunus, R., Tau method for the numerical solution of a fuzzy fractional kinetic model and its application to the oil palm frond as a promising source of xylose, J. of Computational Physics, 294, 562-584 (2015) · Zbl 1349.65207
[2] T. M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. ISTE-Wiley, London, 2014.; Atanacković, T. M.; Pilipović, S.; Stanković, B.; Zorica, D., Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes (2014) · Zbl 1291.74001
[3] T. M. Atanacković, S. Pilipović, B. Stanković, D. Zorica. Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles. ISTE-Wiley, London, 2014.; Atanacković, T. M.; Pilipović, S.; Stanković, B.; Zorica, D., Fractional Calculus with Applications in Mechanics: Wave Propagation Impact and Variational Principles (2014) · Zbl 1293.74001
[4] A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model. Thermal Science20, No 2 (2016), 763-769.; Atangana, A.; Baleanu, D., New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Thermal Science, 20, 2, 763-769 (2016)
[5] G. Bohannan, S. Hurst, and L. Spangler, Electrical component with fractional order impedance, Patent, US 2006/0267595 A1, Nov. 2006.; Bohannan, G.; Hurst, S.; Spangler, L., Electrical component with fractional order impedance, Patent (2006)
[6] G. W. Bohannan, Analog realization of a fractional control element-Revisited. In: Proc. 41st IEEE Int. Conf. on Decision and Control, Tutorial Workshop 2: Fractional Calculus Applicationsin AutomaticControl and Robotics, Dec. 2002, Las Vegas, 2002, 4 p.; Bohannan, G. W., Analog realization of a fractional control element - Revisited In, Analog realization of a fractional control element - Revisited. In: Proc. 41st IEEE Int. Conf. on Decision and Control, Tutorial Workshop 2: Fractional Calculus Applications in Automatic Control and Robotics, Dec. 2002, Las Vegas, 4 (2002)
[7] S. Butera and M. D. Paola, A physically based connection between fractional calculus and fractal geometry. Annals of Physics350 (2014), 146-158.; Butera, S.; Paola, M. D., A physically based connection between fractional calculus and fractal geometry, Annals of Physics, 350, 146-158 (2014) · Zbl 1344.26001
[8] Y. Chen, Better understanding complexities via fractional calculus: From extreme events to Taoism. Invited Debate Lecture, Cluj-Napoca, Romania, 2015. 17th Intern. Carpathian Control Conf.ICCC ’2016, High Tatras - Slovak R., 2016.; Chen, Y., Better understanding complexities via fractional calculus: From extreme events to Taoism, Invited Debate Lecture, Cluj-Napoca, Romania, 2015. 17th Intern. Carpathian Control Conf.ICCC ’2016 (2016)
[9] A. Chikrii and S. Eidelman, Generalized Mittag-Leffler matrix functions in game problems for evolutionary equations of fractional order. Cybern. Syst. Anal. 36, No 3 (2000), 315-338.; Chikrii, A.; Eidelman, S., Generalized Mittag-Leffler matrix functions in game problems for evolutionary equations of fractional order, Cybern. Syst. Anal, 36, 3, 315-338 (2000) · Zbl 1007.91010
[10] E. C. de Oliveira and J. T. Machado, A review of definitions for fractional derivatives and integrals. Math. Problems in Engineering 2014 (2014), Paper ID 238459.; de Oliveira, E. C.; Machado, J. T., A review of definitions for fractional derivatives and integrals, Math. Problems in Engineering 2014 (2014) · Zbl 1407.26013
[11] J. Ellis, Gauguin’s questions in particle physics: Where are we coming from? What are we? Where are we going? CERN-PH-TH/2007-210 Preprint (Oct. 2007), at arXiv:0710.5590v1 [hep-ph]/ 30 Oct. 2007.; Ellis, J., Gauguin’s questions in particle physics: Where are we coming from? What are we? Where are we going?, CERN-PH-TH/2007-210 Preprint
[12] L. Encinas and J. noz Masqué, A short proof of the generalized Faá di Bruno’s formula. Appl. Math. Letters16, No 6 (2003), 975-979.; Encinas, L.; noz Masqué, J., A short proof of the generalized Faá di Bruno’s formula, Appl. Math. Letters, 16, 6, 975-979 (2003) · Zbl 1041.26003
[13] R. Garrappa, Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer. Anal. 53, No 3 (2015), 1350-1369.; Garrappa, R., A short proof of the generalized Faá diBruno’s formula, Appl. Math. Letters, 53, 3, 1350-1369 (2015) · Zbl 1331.33043
[14] R. Garrappa and M. Popolizio, Generalized exponential time differencing methods for fractional order problems. Comput. Math. Appl. 62, No 3 (2011), 876-890.; Garrappa, R.; Popolizio, M., Generalized exponential time differencing methods for fractional order problems, Comput. Math. Appl, 62, 3, 876-890 (2011) · Zbl 1228.65235
[15] R. Gorenflo, J. Loutchko, Y. Luchko, Computation of the Mittag-Leffler function \(E_{α,β}\)(z) and its derivative. Fract. Calc. Appl. Anal. 5, No 4 (2002), 491-518.; Gorenflo, R.; Loutchko, J.; Luchko, Y., Computation of the Mittag-Leffler function \(E_{α,β} \)(z) and its derivative, Fract. Calc. Appl. Anal, 5, 4, 491-518 (2002) · Zbl 1027.33016
[16] T. C. Haba, G. Ablart, T. Camps, The frequency response of a fractal photolithographic structure. IEEE Trans. on Dielectrics and Electrical Insulation4, No 3 (1997), 321-326.; Haba, T. C.; Ablart, G.; Camps, T., The frequencyresponse of a fractal photolithographic structure, IEEE Trans. on Dielectrics and Electrical Insulation, 4, 3, 321-326 (1997)
[17] P. Halmos, The heart of mathematics. The American Mathematical Monthly87, No 7 (Aug.-Sept., 1980), 519-524.; Halmos, P., The heart of mathematics, The American Mathematical Monthly, 87, 7, 519-524 (1980) · Zbl 0452.00017
[18] T. Hartley, C. Lorenzo, J.-C. Trigeassou, N. Maamri, Equivalence of history-function based and infinite-dimensional-state initializations for fractional-order operators. ASME J. of Computational and Nonlinear Dynamics8, No 4 (2013), 041014-041014-7.; Hartley, T.; Lorenzo, C.; Trigeassou, J.-C.; Maamri, N., Equivalence of history-function based and infinite-dimensional-state initializations for fractional-order operators, ASME J. of Computational and Nonlinear Dynamics, 8, 4, 041014-041014-7 (2013)
[19] C. Ionescu, R. D. Keyser, J. Sabatier, A. Oustaloup, F. Levron, Low frequency constant-phase behavior in the respiratory impedance. Biomedical Signal Processing and Control6, No 2 (2011), 197-208.; Ionescu, C.; Keyser, R. D.; Sabatier, J.; Oustaloup, A.; Levron, F., Low frequency constant-phase behavior in the respiratory impedance, Biomedical Signal Processing and Control, 6, 2, 197-208 (2011)
[20] C. Ionescu, J. T. Machado, R. D. Keyser, Fractional-order impulse response of the respiratory system. Computers and Mathematics with Applications62, No 3 (2011), 845-854.; Ionescu, C.; Machado, J. T.; Keyser, R. D., Fractional-order impulse response of the respiratory system, Computers and Mathematics with Applications, 62, 3, 845-854 (2011) · Zbl 1228.65251
[21] A. N. Kochubei, General fractional calculus, evolution equations, and renewal processes. Integral Equations and Operator Theory71, No 4 (2011), 583-600.; Kochubei, A. N., General fractional calculus, evolution equations, and renewal processes, Integral Equations and Operator Theory, 71, 4, 583-600 (2011) · Zbl 1250.26006
[22] H. Komatsu, Laplace transform of hyperfunctions - A new foundationof the Heaviside calculus. J. of the Faculty Science, the University Tokyo, 34, IA (1987), 805-820.; Komatsu, H., Laplace transform of hyperfunctions - A new foundation of the Heaviside calculus, J. of the Faculty Science, the University Tokyo, 34, 805-820 (1987) · Zbl 0644.44001
[23] H. Komatsu, Solutions of Differential Equations by Means of Laplace Hyperfunctions, Structure of Solutions Differential Equations. Word Scientific, Katata/Kyoto, 1996.; Komatsu, H., Solutions of Differential Equations by Means of Laplace Hyperfunctions, Structure of Solutions Differential Equations (1996) · Zbl 0894.35005
[24] P. Lanusse, D. Nelson-Gruel, A. Lamara, A. Lesobre, X. Wang, Y. Chamaillard, A. Oustaloup, Development of a fractional order based MIMO controller for high dynamic engine testbeds. In: Control Engineering Practice, 2016.; Lanusse, P.; Nelson-Gruel, D.; Lamara, A.; Lesobre, A.; Wang, X.; Chamaillard, Y.; Oustaloup, A., Development of a fractional order based MIMO controller for high dynamic engine testbeds. In, Control Engineering Practice (2016)
[25] C. Li and F. Zeng, Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton, 2015.; Li, C.; Zeng, F., Numerical Methods for Fractional Calculus (2015) · Zbl 1326.65033
[26] C. Lorenzo and T. Hartley, Initialized fractional calculus. Int. J. of Applied Mathematics3, No 3 (2000), 249-266.; Lorenzo, C.; Hartley, T., Initialized fractional calculus, Int. J. of Applied Mathematics, 3, 3, 249-266 (2000) · Zbl 1172.26301
[27] C. F. Lorenzo and T. T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dynamics29, No 1 (2002), 57-98.; Lorenzo, C. F.; Hartley, T. T., Variable order and distributed order fractional operators, Nonlinear Dynamics, 29, 1, 57-98 (2002) · Zbl 1018.93007
[28] Y. Luchko and M. Yamamoto, General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundaryvalue problems. Fract. Calc. Appl. Anal. 19, No 3 (2016), 676-695; Luchko, Y.; Yamamoto, M., General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundaryvalue problems, Fract. Calc. Appl. Anal, 19, 3, 676-695 (2016) · Zbl 1499.35667
[29] J. T. Machado and A. M. Lopes, Analysis of natural and artificial phenomena. Fract. Calc. Appl. Anal. 18, No 2 (2015), 459-478; ; .; Machado, J. T.; Lopes, A. M., Analysis of natural and artificial phenomena, Fract. Calc. Appl. Anal, 18, 2, 459-478 (2015) · Zbl 1323.92092 · doi:10.1515/fca-2015-0029
[30] J. T. Machado, A. M. Lopes, D. Valério, A. M. Galhano, Solved Problems in Dynamical Systems and Control. The Institution of Engineering and Technology, Stevenage - UK, 2016.; Machado, J. T.; Lopes, A. M.; Valério, D.; Galhano, A. M., Solved Problems in Dynamical Systems and Control (2016) · Zbl 1354.00006
[31] J. T. Machado, F. Mainardi, and V. Kiryakova, Fractional calculus: Quo vadimus? (Where are we going?). Fract. Calc. Appl. Anal. 18, No 2 (2015), 495-526; ; .; Machado, J. T.; Mainardi, F.; Kiryakova, V., Fractional calculus: Quo vadimus? (Where are we going?), Fract. Calc. Appl. Anal, 18, 2, 495-526 (2015) · Zbl 1309.26011 · doi:10.1515/fca-2015-0031
[32] G. Maione, R. R. Nigmatullin, J. A. T. Machado, J. Sabatier, New challenges in fractional systems 2014 (Editorial). Mathematical Problems in Engineering2015 (2015), Paper ID 870841, 3p; Maione, G.; Nigmatullin, R. R.; Machado, J. A. T.; Sabatier, J., New challenges in fractional systems 2014 (Editorial), Mathematical Problems in Engineering (2015)
[33] A. L. Méhauté, R. R. Nigmatullin, L. Nivanen,Flèches du temps et géométrie fractale. Lecture Notes in Electrical Engineering, Hermes Science Publ., Paris, 1998.; Méhauté, A. L.; Nigmatullin, R. R.; Nivanen, L., Lecture Notes in Electrical Engineering, Flèches du temps et géométrie fractale (1998) · Zbl 0906.58026
[34] A. Morand, X. Moreau, P. Melchior, M. Moze, F. Guillemard, CRONE cruise control system. IEEE Trans. on Vehicular Technology65, No 1 (2016), 15-28.; Morand, A.; Moreau, X.; Melchior, P.; Moze, M.; Guillemard, F., CRONE cruise control system, IEEE Trans. on Vehicular Technology, 65, 1, 15-28 (2016)
[35] I. Moret and P. Novati, On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions. SIAM J. Numer. Anal. 49, No 5 (2011), 2144-2164.; Moret, I.; Novati, P., On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions, SIAM J. Numer. Anal, 49, 5, 2144-2164 (2011) · Zbl 1244.65065
[36] J. Nestruev, Smooth Manifolds and Observables. Springer-Verlag, New York, 2003.; Nestruev, J., Smooth Manifolds and Observables (2003) · Zbl 1021.58001
[37] R. R. Nigmatullin and D. Baleanu, New relationships connecting a class of fractal objects and fractional integrals in space. Fract. Calc. Appl. Anal. 16, No 4 (2013), 911-936; ; .; Nigmatullin, R. R.; Baleanu, D., New relationships connecting a class of fractal objects and fractional integrals in space, Fract. Calc. Appl. Anal, 16, 4, 911-936 (2013) · Zbl 1312.28008 · doi:10.2478/s13540-013-0056-1
[38] R. R. Nigmatullin and A. L. Méhauté, Is there geometrical/physical meaning of the fractional integral with complex exponent? J. of Non-Crystalline Solids351 (2005), 2888-2899.; Nigmatullin, R. R.; Méhauté, A. L., Is there geometrical/physical meaning of the fractional integral with complex exponent?, J. of Non-Crystalline Solids, 351, 2888-2899 (2005)
[39] M. D. Ortigueira, Comments on “modeling fractional stochastic systems as non-random fractional dynamics driven brownian motions”. Appl. Math. Modelling33, No 5 (2009), 2534-2537; Ortigueira, M. D., Comments on “modeling fractional stochastic systems as non-random fractional dynamics driven brownian motions”, Appl. Math. Modelling, 33, 5, 2534-2537 (2009) · Zbl 1185.60063
[40] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers. Lecture Notes in Electr. Eng., Springer, Berlin-Heidelberg, 2011.; Ortigueira, M. D., Lecture Notes in Electr. Eng, Fractional Calculus for Scientists and Engineers (2011) · Zbl 1251.26005
[41] M. D. Ortigueira, J. T. Machado, J. S. da Costa, Which differintegration? [fractional calculus]. Vision, Image and Signal Processing, IEE Proceedings152, No 6 (2005), 846-850.; Ortigueira, M. D.; Machado, J. T.; da Costa, J. S., Which differintegration? [fractional calculus], Vision, Image and Signal Processing, IEE Proceedings, 152, 6, 846-850 (2005)
[42] M. D. Ortigueira, J. T. Machado, J. J. Trujillo, Fractional derivatives and periodic functions. International J. of Dynamics and Control2015 (2015), 7 p; Ortigueira, M. D.; Machado, J. T.; Trujillo, J. J., Fractional derivatives and periodic functions, International J. of Dynamics and Control (2015)
[43] M. D. Ortigueira, D. F. Torres, J. J. Trujillo, Exponentials and Laplace transforms on nonuniform time scales. Commun. in Nonlinear Science and Numerical Simulation39 (2016), 252-270.; Ortigueira, M. D.; Torres, D. F.; Trujillo, J. J., Exponentials and Laplace transforms on nonuniform time scales, Commun. in Nonlinear Science and Numerical Simulation, 39, 252-270 (2016) · Zbl 1510.44002
[44] I. Podlubny,Fractional Differential Equations. Academic Press, San Diego, 1998.; Podlubny, I., Fractional Differential Equations (1998) · Zbl 0922.45001
[45] A. Potapov, A. Gil’mutdinov, P. Ushakov, Fractional-order Elements and Systems. Russia, 2009 (In Russian).; Potapov, A.; Gil’mutdinov, A.; Ushakov, P., Fractional-order Elements and Systems (2009)
[46] A. A. Potapov, Fractals in Radiophysics and Radar: Topology of a Samples. Universitetskaya Kniga, Moscow, 2005 (In Russian).; Potapov, A. A., Fractals in Radiophysics Radar: Topology of a Samples (2005)
[47] J. Sabatier, M. Merveillaut, R. Malti, A. Oustaloup, How to impose physically coherent initial conditions to a fractional system? Commun. in Nonlinear Science and Numerical Simulation15 No 5 (2010), 1318-1326.; Sabatier, J.; Merveillaut, M.; Malti, R.; Oustaloup, A., How to impose physically coherent initial conditions to a fractional system?, Commun. in Nonlinear Science Numerical Simulation, 15, 5, 1318-1326 (2010) · Zbl 1221.34019
[48] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam, 1993.; Samko, S.; Kilbas, A.; Marichev, O., Fractional Integrals Derivatives: Theory Applications (1993) · Zbl 0818.26003
[49] D. J. Saunders, The Geometry of Jet Bundles. Cambridge University Press, Cambridge, 1989.; Saunders, D. J., The Geometry of Jet Bundles (1989) · Zbl 0665.58002
[50] C. Shi Liu, Counterexamples on Jumarie’s two basic fractional calculus formulae. Commun. in Nonlinear Science and Numerical Simulation22, No 1-3 (2015), 92-94.; Shi Liu, C., Counterexamples on Jumarie’s two basic fractional calculus formulae, Commun. in Nonlinear Science Numerical Simulation, 22, 1-3, 92-94 (2015) · Zbl 1331.26010
[51] B. Stanković, Laplace transform of functions defined on a bounded interval. Bull. de l’Académie Serbe des Sciences et des Arts, Sciences Mathématiques34, No 40 (2015), 99-113.; Stanković, B., Laplace transform of functions defined on a bounded interval, Bull. de l’Académie Serbe des Sciences et des Arts Sciences Mathématiques, 34, 40, 99-113 (2015) · Zbl 1456.44002
[52] V. E. Tarasov, No violation of the Leibniz rule. No fractional derivative. Commun. in Nonlinear Science and Numerical Simulation18, No 11(2013), 2945-2948.; Tarasov, V. E., No violation of the Leibniz rule. No fractional derivative, Commun. in Nonlinear Science Numerical Simulation, 18, 11, 2945-2948 (2013) · Zbl 1329.26015
[53] V. E. Tarasov, Exact discretization by Fourier transforms. Commun.in Nonlinear Science and Numerical Simulation37 (2016), 31-61.; Tarasov, V. E., Exact discretization by Fourier transforms, Commun. in Nonlinear Science and Numerical Simulation, 37, 31-61 (2016) · Zbl 1473.42011
[54] V. E. Tarasov, United lattice fractional integro-differentiation. Fract. Calc. Appl. Anal. 19, No 3 (2016), 625-664; ; .; Tarasov, V. E., United lattice fractional integrog-differentiation, Fract. Calc. Appl. Anal, 19, 3, 625-664 (2016) · Zbl 1345.26016 · doi:10.1515/fca-2016-0034
[55] V. E. Tarasov, Geometric interpretation of fractional-order derivatives. Fract. Calc. Appl. Anal. 19, No 5 (2016); same issue; 1200-1221; ; .; Tarasov, V. E., Geometric interpretation of fractional-order derivatives, Fract. Calc. Appl. Anal. same issue, 19, 5, 1200-1221 (2016) · Zbl 1488.26026 · doi:10.1515/fca-2016-0062
[56] J. Trigeassou and N. Maamri, Initial conditions and initialization of linear fractional differential equations. Signal Processing91, No 3 (2011),427-436.; Trigeassou, J.; Maamri, N., Initial conditions initialization of linear fractional differential equations, Signal Processing, 91, 3, 427-436 (2011) · Zbl 1203.94058
[57] D. Valério, J. T. Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 17, No 2 (2014), 552-578; ; .; Valério, D.; Machado, J. T.; Kiryakova, V., Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal, 17, 2, 552-578 (2014) · Zbl 1305.26008 · doi:10.2478/s13540-014-0185-1
[58] S. Victor, R. Malti, H. Garnier, A. Oustaloup, Parameter and differentiation order estimation in fractional models. Automatica49, No 4 (2013), 926-935.; Victor, S.; Malti, R.; Garnier, H.; Oustaloup, A., Parameter differentiation order estimation in fractional models, Automatica, 49, 4, 926-935 (2013) · Zbl 1284.93228
[59] B. J. West, Complex Worlds: Uncertain, Unequal, Unfair. Black Rose Writing Publishing, Castroville, 2012.; West, B. J., complex Worlds: Uncertain Unfair (2012)
[60] B. J. West, Fractional Calculus View of Complexity: Tomorrow’s Science. CRC Press, Boca Raton, 2015.; West, B. J., Fractional Calculus View of Complexity: Tomorrow’s Science (2015) · Zbl 1330.00030
[61] 2020-01-09 05:41:05 <mixed-citation><italic>Wikipedia</italic>: Where Do We Come From? What Are We? Where Are We Going?; at en.wikipedia.org/wiki/Where Do We Come From? What Are We? Where Are We Going?; and Paul Gauguin; at <ext-link ext-link-type=“uri” xlink.href=“https://en.wikipedia.org/wiki/Paul Gauguin”>https://en.wikipedia.org/wiki/Paul Gauguin</ext-link>.</mixed-citation>; 2020-01-09 05:41:05 Citation within text. · Zbl 1304.57006
[62] G.-C. Wu, D. Baleanu, H.-P. Xie, F.-L. Chen, Chaos synchronization of fractional chaotic maps based on the stability conditions. Physica A460 (2016), 374-383.; Wu, G.-C.; Baleanu, D.; Xie, H.-P.; Chen, F.-L., Chaos synchronization of fractional chaotic maps based on the stability conditions, Physica A, 460, 374-383 (2016) · Zbl 1400.34107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.