×

Entropy-transport distances between unbalanced metric measure spaces. (English) Zbl 1503.53086

Inspired by the work [M. Liero et al., Invent. Math. 211, No. 3, 969–1117 (2018; Zbl 1412.49089)] in the theory of optimal entropy-transport problems and by the construction of \(\textbf{D}\)-distance in [K.-T. Sturm, Acta Math. 196, No. 1, 65–131 (2006; Zbl 1105.53035)], the authors introduce a new class of complete and separable distances between metric measure spaces (mm-spaces) by replacing the Wasserstein distance with an entropy-transport distance. The authors first define a regular entropy-transport distance and then the Sturm-entropy-transport distance (SET-distance), which actually origins from the definition of Gromov-Hausdorff distance, between two mm-spaces (which do not necessarily have the same total measures).
The authors show their main result in Theorem 2, proving that every SET-distance defines a complete and separable metric structure on the set of equivalence classes of mm-spaces X. Furthermore, such metric structures on X also turn out to be length (resp., geodesic) when the underlying entropy-transport distance is length (resp., geodesic).
It is proved that the weak measured-Gromov convergence coincides with the convergence induced by any SET-distances. The authors define the strong measured-Gromov convergence (which was also defined independently in [J. Deng, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 013, 20 p. (2021; Zbl 1466.53049)] in Remark 2.3) and then prove that this convergence coincides with the convergence induced by the distance \(\textbf{PL}_p\) for very \(p\geq 1\).
In the last section, the authors discover an upper bound of the conic Gromov-Wasserstein distance in terms of the SET-distance.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
60B10 Convergence of probability measures
49J45 Methods involving semicontinuity and convergence; relaxation

References:

[1] Alvarez-Melis, D., Jaakkola, T.S.: “Gromov-Wasserstein Alignment of Word Embedding Spaces”, Proc. 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1881-1890 (2018)
[2] Ambrosio, L.: “Calculus, heat flow and curvature-dimension bounds in metric measure spaces”, In: Proceedings of the ICM 2018, Rio de Janeiro, Vol. 1, pp. 301-340 · Zbl 1475.30129
[3] Ambrosio, L.; Gigli, N.; Mondino, A.; Rajala, T., Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure, Trans. Amer. Math. Soc., 367, 7, 4661-4701 (2015) · Zbl 1317.53060 · doi:10.1090/S0002-9947-2015-06111-X
[4] Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 1405-1490 (2014) · Zbl 1304.35310 · doi:10.1215/00127094-2681605
[5] Ambrosio, L., Mondino, A., Savaré, G.: “Nonlinear diffusion equations and curvature conditions in metric measure spaces”, Mem. Amer. Math. Soc., 262(1270) (2019)
[6] Bunne, C., Alvarez-Melis, D., Krause, A., Jegelka, S.: “Learning generative models across incomparable spaces”, Proc. \(36^{th}\) Intern. Conference on Machine Learning, Long Beach, California, PMLR 97 (2019)
[7] Cavalletti, F.; Milman, E., The Globalization Theorem for the Curvature Dimension Condition, Invent. Math., 226, 1-137 (2021) · Zbl 1479.53049 · doi:10.1007/s00222-021-01040-6
[8] Cheeger, J.; Colding, T., On the structure of spaces with Ricci curvature bounded below I, J. Diff. Geom., 45, 406-480 (1997) · Zbl 0902.53034
[9] Chizat, L.; Bach, F., On the global convergence of gradient descent for over-parameterized models using optimal transport, Adv. Neural. Inf. Process. Syst., 31, 3036-3046 (2018)
[10] Chizat, L.; Peyré, G.; Schmitzer, B.; Vialard, F-X, Unbalanced optimal transport: dynamic and Kantorovich formulations, J. Funct. Anal., 274, 11, 3090-3123 (2018) · Zbl 1387.49066 · doi:10.1016/j.jfa.2018.03.008
[11] Chowdhury, S.; Mémoli, F., The Gromov-Wasserstein distance between networks and stable network invariants, Information and Inference: A Journal of the IMA, 8, 4, 757-787 (2019) · Zbl 1471.62387 · doi:10.1093/imaiai/iaz026
[12] Csiszár, I., Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8, 85-108 (1963) · Zbl 0124.08703
[13] Demetci, P., Santorella, R., Sandstede, B., Noble, W. S., Singh, R.: “Gromov-Wasserstein Optimal Transport to Align Single-Cell Multi-Omics Data”, 2020 ICML Workshop on Computational Biology, paper 51 (2020)
[14] De Ponti, N., Metric properties of homogeneous and spatially inhomogeneous \(F\)-divergences, IEEE Trans. Inf. Theory, 66, 5, 2872-2890 (2020) · Zbl 1446.94040 · doi:10.1109/TIT.2019.2937485
[15] De Ponti, N.: “Optimal transport: entropic regularizations, geometry and diffusion PDEs”, Phd Thesis, http://cvgmt.sns.it/paper/4525/ (2019)
[16] Erbar, M.; Kuwada, K.; Sturm, KT, On the Equivalence of the Entropic Curvature-Dimension Condition and Bochner’s Inequality on Metric Measure Space, Invent. Math., 201, 3, 993-1071 (2015) · Zbl 1329.53059 · doi:10.1007/s00222-014-0563-7
[17] Feydy, J., Roussillon, P., Trouvé, A., Gori, P.: “Fast and scalable optimal transport for brain tractograms”, Intern. Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 636-644. Springer (2019)
[18] Frogner, C.; Zhang, C.; Mobahi, H.; Araya, M.; Poggio, TA, Learning with a Wasserstein loss, Adv. Neural. Inf. Process. Syst., 28, 2053-2061 (2015)
[19] Fukaya, K., Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math., 87, 3, 517-547 (1987) · Zbl 0589.58034 · doi:10.1007/BF01389241
[20] Gigli, N., On the differential structure of metric measure spaces and applications, Mem. Amer. Math. Soc., 236, 1113, vi+91 (2015) · Zbl 1325.53054
[21] Gigli, N.; Mondino, A.; Savaré, G., Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. London Math. Soc. (3), 111, 1071-1129 (2015) · Zbl 1398.53044
[22] Gigli, N.; Pasqualetto, E., Lectures on Nonsmooth Differential Geometry (2020), New York: Springer International Publishing, New York · Zbl 1452.53002 · doi:10.1007/978-3-030-38613-9
[23] Gromov, M., Metric Structures for Riemannian and Non-riemannian Spaces (1999), Boston: Birkhäuser Boston Inc, Boston · Zbl 0953.53002
[24] Kawano, S.; Mason, JK, Classification of atomic environments via the Gromov-Wasserstein distance, Comp. Mater. Sci., 188 (2021) · doi:10.1016/j.commatsci.2020.110144
[25] Kondratyev, S.; Monsaingeon, L.; Vorotnikov, D., A new optimal transport distance on the space of finite Radon measures, Adv. Differential Equations, 21, 11-12, 1117-1164 (2016) · Zbl 1375.49062
[26] Ledoux, M., The Concentration of Measure Phenomenon (2001), United States: American Math. Soc, United States · Zbl 0995.60002
[27] Lee, J.; Bertrand, NP; Rozell, CJ, Unbalanced Optimal Transport Regularization for Imaging Problems, IEEE Trans. Comput. Imaging, 6, 1219-1232 (2020) · doi:10.1109/TCI.2020.3012954
[28] Liero, M.; Mielke, A.; Savaré, G., Optimal Transport in Competition with Reaction: The Hellinger-Kantorovich Distance and Geodesic Curves, SIAM J. Math. Analysis, 48, 4, 2869-2911 (2016) · Zbl 1347.49078 · doi:10.1137/15M1041420
[29] Liero, M.; Mielke, A.; Savaré, G., Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures, Invent. Math., 211, 3, 969-1117 (2018) · Zbl 1412.49089 · doi:10.1007/s00222-017-0759-8
[30] Lott, J.; Villani, C., Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math., 169, 903-991 (2009) · Zbl 1178.53038 · doi:10.4007/annals.2009.169.903
[31] Luise, G., Savaré, G.: “Contraction and regularizing properties of heat flows in metric measure spaces”, Discrete and Continuous Dynamical Systems Series S, early access, doi:10.3934/dcdss.2020327 (2020)
[32] Mémoli, F., Gromov-Wasserstein distances and the metric approach to object matching, Found. Comput. Math., 11, 4, 417-487 (2011) · Zbl 1244.68078 · doi:10.1007/s10208-011-9093-5
[33] Peyré, G.; Cuturi, M., Computational Optimal Transport: With Applications to Data Science, Found. Trend Mach. Learning, 11, 5-6, 355-607 (2019) · Zbl 1475.68011 · doi:10.1561/2200000073
[34] Peyré, G., Cuturi, M., Solomon, J.: “Gromov-Wasserstein averaging of kernel and distance matrices”, ICML’16: Proceedings of the 33rd International Conference on International Conference on Machine Learning, Vol. 48, pp. 2664-2672 (2016)
[35] Piccoli, B.; Rossi, F., Generalized Wasserstein distance and its application to transport equations with source, Arch. Ration. Mech. Anal., 211, 335-358 (2014) · Zbl 1480.35378 · doi:10.1007/s00205-013-0669-x
[36] Piccoli, B.; Rossi, F., On properties of the Generalized Wasserstein distance, Arch. Ration. Mech. Anal., 222, 1339-1365 (2016) · Zbl 1351.49057 · doi:10.1007/s00205-016-1026-7
[37] Rotskoff, G., Jelassi, S., Bruna, J., Vanden-Eijnden, E.: “Global convergence of neuron birth-death dynamics”, Proc. \(36^{th}\) Intern. Conference on Machine Learning, Long Beach, California, PMLR 97 (2019)
[38] Séjourné, T., Feydy, J., Vialard, F-X., Trouvé, A., Peyré, G.: “Sinkhorn Divergences for Unbalanced Optimal Transport”, preprint arXiv:1910.12958
[39] Séjourné, T., Vialard, F.X., Peyré, G.: “The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation”, Advances in Neural Information Processing Systems 34, NeurIPS 2021 (2021)
[40] Schmitzer, B.; Schnörr, C., Modelling convex shape priors and matching based on the Gromov-Wasserstein distance, J. Math. Imaging and Vision, 46, 1, 143-159 (2013) · Zbl 1304.68192 · doi:10.1007/s10851-012-0375-6
[41] Shioya, T.: “Metric measure geometry”, Vol. 25, IRMA Lectures in Math. and Theoretical Phys., EMS Publishing House, Zürich, pp. xi+182 (2016) · Zbl 1335.53003
[42] Solomon, J.; Peyré, G.; Kim, VG; Sra, S., Entropic metric alignment for correspondence problems, ACM Trans. Gr., 35, 4, 1-13 (2016) · doi:10.1145/2897824.2925903
[43] Sturm, KT, On the geometry of metric measure spaces. I, Acta Math., 196, 1, 65-131 (2006) · Zbl 1105.53035 · doi:10.1007/s11511-006-0002-8
[44] Sturm, KT, On the geometry of metric measure spaces. II, Acta Math., 196, 1, 133-177 (2006) · Zbl 1106.53032 · doi:10.1007/s11511-006-0003-7
[45] Sturm, K.T.: “The space of spaces: curvature bounds and gradient flows on the space of metric measure spaces”, preprint arXiv:1208.0434 · Zbl 1530.53005
[46] Xu, H.; Luo, D.; Carin, L., Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching, Adv. Neural. Inf. Process. Syst., 32, 3046-3056 (2019)
[47] Vayer, T.; Chapel, L.; Flamary, R.; Tavenard, R.; Courty, N., Fused Gromov-Wasserstein Distance for Structured Objects, Algorithms, 13, 9, 212 (2020) · doi:10.3390/a13090212
[48] Villani, C., Optimal Transport - Old and New (2009), Berlin: Springer, Berlin · Zbl 1156.53003 · doi:10.1007/978-3-540-71050-9
[49] Weitkamp, C. A., Proksch, K., Tameling, C., Munk, A.: “Gromov-Wasserstein Distance based Object Matching: Asymptotic Inference” preprint arXiv:2006.12287 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.