×

A relaxation viewpoint to unbalanced optimal transport: duality, optimality and Monge formulation. (English. French summary) Zbl 07882131

Authors’ abstract: We present a general convex relaxation approach to study a wide class of unbalanced optimal transport problems for finite non-negative measures with possibly different masses. These are obtained as the lower semicontinuous and convex envelope of a cost for non-negative Dirac masses. New general primal-dual formulations, optimality conditions, and metric-topological properties are carefully studied and discussed.

MSC:

49Q22 Optimal transportation
49J45 Methods involving semicontinuity and convergence; relaxation
28A33 Spaces of measures, convergence of measures
49K27 Optimality conditions for problems in abstract spaces

Software:

EMD

References:

[1] Benamou, J.-D.; Brenier, Y., A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84, 3, 375-393, 2000 · Zbl 0968.76069
[2] Kondratyev, S.; Monsaingeon, L.; Vorotnikov, D., A new optimal transport distance on the space of finite Radon measures, Adv. Differ. Equ., 21, 11-12, 1117-1164, 2016 · Zbl 1375.49062
[3] Maas, J.; Rumpf, M.; Schönlieb, C.; Simon, S., A generalized model for optimal transport of images including dissipation and density modulation, ESAIM: Math. Model. Numer. Anal., 49, 6, 1745-1769, 2015 · Zbl 1348.94009
[4] Lombardi, D.; Maitre, E., Eulerian models and algorithms for unbalanced optimal transport, ESAIM: Math. Model. Numer. Anal., 49, 6, 1717-1744, 2015 · Zbl 1334.65112
[5] Piccoli, B.; Rossi, F., Generalized Wasserstein distance and its application to transport equations with source, Arch. Ration. Mech. Anal., 211, 1, 335-358, 2014 · Zbl 1480.35378
[6] Piccoli, B.; Rossi, F., On properties of the generalized Wasserstein distance, Arch. Ration. Mech. Anal., 222, 3, 1339-1365, 2016 · Zbl 1351.49057
[7] Chizat, L.; Peyré, G.; Schmitzer, B.; Vialard, F.-X., An interpolating distance between optimal transport and Fisher-Rao metrics, Found. Comput. Math., 18, 1, 1-44, 2018 · Zbl 1385.49031
[8] Chizat, L.; Peyré, G.; Schmitzer, B.; Vialard, F.-X., Unbalanced optimal transport: dynamic and Kantorovich formulations, J. Funct. Anal., 274, 11, 3090-3123, 2018 · Zbl 1387.49066
[9] Liero, M.; Mielke, A.; Savaré, G., Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures, Invent. Math., 211, 3, 969-1117, 2018 · Zbl 1412.49089
[10] Laschos, V.; Mielke, A., Geometric properties of cones with applications on the Hellinger-Kantorovich space, and a new distance on the space of probability measures, J. Funct. Anal., 276, 11, 3529-3576, 2019 · Zbl 1422.60009
[11] Kantorovich, L.; Rubinstein, G. S., On a space of totally additive functions, Vestn. Leningr. Univ., 13, 52-59, 1958 · Zbl 0082.11001
[12] Hanin, L. G., An extension of the Kantorovich norm, (Monge Ampère Equation: Applications to Geometry and Optimization. Monge Ampère Equation: Applications to Geometry and Optimization, Deerfield Beach, FL, 1997. Monge Ampère Equation: Applications to Geometry and Optimization. Monge Ampère Equation: Applications to Geometry and Optimization, Deerfield Beach, FL, 1997, Contemp. Math., vol. 226, 1999, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 113-130 · Zbl 0926.46009
[13] Hanin, L. G., Kantorovich-Rubinstein norm and its application in the theory of Lipschitz spaces, Proc. Am. Math. Soc., 115, 2, 345-352, 1992 · Zbl 0768.46012
[14] Figalli, A.; Gigli, N., A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions, J. Math. Pures Appl. (9), 94, 2, 107-130, 2010 · Zbl 1203.35126
[15] Guittet, K., Extended Kantorovich norms: a tool for optimization, 2002, INRIA, Tech. Rep. 4402
[16] Caffarelli, L. A.; McCann, R. J., Free boundaries in optimal transport and Monge-Ampère obstacle problems, Ann. Math. (2), 171, 2, 673-730, 2010 · Zbl 1196.35231
[17] Figalli, A., The optimal partial transport problem, Arch. Ration. Mech. Anal., 195, 2, 533-560, 2010 · Zbl 1245.49059
[18] Pele, Ofir; Werman, Michael, A Linear Time Histogram Metric for Improved SIFT Matching, (Forsyth, David; Torr, Philip; Zisserman, Andrew, Computer Vision - ECCV 2008, 2008, Springer: Springer Berlin, Heidelberg), 495-508
[19] Rubner, Y.; Guibas, L.; Tomasi, C., The Earth mover’s distance, multi-dimensional scaling, and color-based image retrieval, (Proceedings of the ARPA Image Understanding Workshop, 1997)
[20] Benamou, J.-D., Numerical resolution of an “unbalanced” mass transport problem, M2AN Math. Model. Numer. Anal., 37, 5, 851-868, 2003 · Zbl 1037.65063
[21] Savaré, G.; Sodini, G. E., A simple relaxation approach to duality for optimal transport problems in completely regular spaces, J. Convex Anal., 29, 1, 1-12, 2022 · Zbl 1486.49046
[22] Beiglböck, M.; Goldstern, M.; Maresch, G.; Schachermayer, W., Optimal and better transport plans, J. Funct. Anal., 256, 6, 1907-1927, 2009 · Zbl 1157.49019
[23] Bianchini, S.; Caravenna, L., On optimality of c-cyclically monotone transference plans, C. R. Math. Acad. Sci. Paris, 348, 11-12, 613-618, 2010 · Zbl 1204.49012
[24] Liero, M.; Mielke, A.; Savaré, G., Fine properties of geodesics and geodesic λ-convexity for the Hellinger-Kantorovich distance, Arch. Ration. Mech. Anal., 247, 6, 112, 2023 · Zbl 1533.53035
[25] Pratelli, A., On the equality between Monge’s infimum and Kantorovich’s minimum in optimal mass transportation, Ann. Inst. Henri Poincaré Probab. Stat., 43, 1, 1-13, 2007 · Zbl 1121.49036
[26] De Ponti, N., Metric properties of homogeneous and spatially inhomogeneous F-divergences, IEEE Trans. Inf. Theory, 66, 5, 2872-2890, 2020 · Zbl 1446.94040
[27] De Ponti, N.; Mondino, A., Entropy-transport distances between unbalanced metric measure spaces, Probab. Theory Relat. Fields, 184, 1-2, 159-208, 2022 · Zbl 1503.53086
[28] Ambrosio, L.; Gigli, N.; Savaré, G., Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, 2008, Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1145.35001
[29] Bogachev, V. I., Measure Theory, vol. II, 2006, Springer: Springer Berlin Heidelberg
[30] Folland, G. B., Real analysis, (Modern Techniques and Their Applications. Modern Techniques and Their Applications, Pure and Applied Mathematics (New York), 1999, John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York), A Wiley-Interscience Publication · Zbl 0924.28001
[31] Liero, M.; Mielke, A.; Savaré, G., Optimal transport in competition with reaction: the Hellinger-Kantorovich distance and geodesic curves, SIAM J. Math. Anal., 48, 4, 2869-2911, 2016 · Zbl 1347.49078
[32] Chizat, L., Unbalanced optimal transport: Models, numerical methods, applications, 2017, Université Paris Sciences et Lettres, Ph.D. thesis
[33] Ekeland, I.; Témam, R., Convex Analysis and Variational Problems, Classics in Applied Mathematics, 1987, Society for Industrial Mathematics
[34] Santambrogio, F., Optimal transport for applied mathematicians, (Calculus of Variations, PDEs, and Modeling. Calculus of Variations, PDEs, and Modeling, Progress in Nonlinear Differential Equations and Their Applications, vol. 87, 2015, Birkhäuser/Springer: Birkhäuser/Springer Cham) · Zbl 1401.49002
[35] Champion, T.; De Pascale, L., On the twist condition and c-monotone transport plans, Discrete Contin. Dyn. Syst., 34, 4, 1339-1353, 2014 · Zbl 1275.49082
[36] Villani, C., Optimal Transport, Grundlehren der Mathematischen Wissenschaften, vol. 338, 2009, Springer-Verlag: Springer-Verlag Berlin, old and new · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.