×

Majorana-Oppenheimer approach to Maxwell electrodynamics. I: Minkowski space. (English) Zbl 1271.78011

The authors investigate the Maxwell electrodynamics in the presence of electrical sources and arbitrary media based on the Riemann-Silberstein-Majorana-Oppenheimer approach. The approach leads to the symmetric matrix equation under the complex rotation group \(SO(3,\mathbb{C})\). The authors studies the specific form of matrices in the cases of vacuum, of an arbitrary medium, and of Minkowski constitutive relations for arbitrary linear media. The authors also give the relation of the matrix model to spinor and quaternion forms.

MSC:

78A25 Electromagnetic theory (general)
81V10 Electromagnetic interaction; quantum electrodynamics
15B33 Matrices over special rings (quaternions, finite fields, etc.)

References:

[1] Lorentz H.: Electromagnetic Phenomena in a System Moving with any Velocity less than that of Light. Proc. Royal Acad. Amsterdam. 6, 809–831 (1904)
[2] Poincaré H.: Sur la dynamique de l’électron. C. R. Acad. Sci. Paris. 140, 1504–1508 (1905) · JFM 36.0911.02
[3] Poincaré H.: Sur la Dynamique de l’Électron. Rendiconti del Circolo Matematico di Palermo. 21, 129–175 (1906) · JFM 37.0886.01 · doi:10.1007/BF03013466
[4] Einstein A.: Zur Elektrodynamik der bewegten Körper. Annalen der Physik. 17, 891–921 (1905) · JFM 36.0920.02 · doi:10.1002/andp.19053221004
[5] H. Minkowski, Die Grundlagen für die electromagnetischen Vorgänge in bewegten Kërpern. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse. (1908), 53-111; Reprint in Math. Ann. 68, (1910), 472-525. · JFM 39.0909.02
[6] Silberstein L.: Elektromagnetische Grundgleichungen in bivectorieller Behandlung. Ann. Phys. (Leiptzig) 22, 579–586 (1907) · JFM 38.0871.02 · doi:10.1002/andp.19073270313
[7] Silberstein L.: Nachtrag zur Abhandlung Über elektromagnetische Grundgleichungen in bivektorieller Behandlung. Ann. der Phys. 24, 783–784 (1907) · JFM 38.0871.02 · doi:10.1002/andp.19073291409
[8] Silberstein. L.: The Theory of Relativity. Macmillan, London (1914) · JFM 45.1150.07
[9] Marcolongo R.: Les Transformations de Lorentz et les Équations de l’Électrodynamique. Annales de la Faculté des Sciences de Toulouse. 4, 429–468 (1912) · JFM 45.1144.05 · doi:10.5802/afst.285
[10] H. Bateman, The Mathematical Analysis of Electrical and Optical Wave- Motion on the Basis of Maxwells Equations. Cambridge University Press (1915). · JFM 45.1324.05
[11] K. Lanczos, Die Funktionentheoretischen Beziehungen der Maxwellschen Aethergleichungen - Ein Beitrag zur Relativitätsund Elektronentheorie. Verlagsbuchhandlung Josef Nëmeth. Budapest (1919), 80 pages.
[12] Gordon W.: Zur Lichtfortpanzungnach der Relativitätstheorie. Ann. Phys. (Leipzig) 72, 421–456 (1923) · JFM 49.0653.07 · doi:10.1002/andp.19233772202
[13] Mandelstam L., Tamm I.: Elektrodynamik der anisotropen Medien und der speziallen Relativitatstheorie. Math. Annalen. 95, 154–160 (1925) · JFM 51.0716.04 · doi:10.1007/BF01206604
[14] Tamm I.: Electrodynamics of an Anisotropic Medium and the Special Theory of Relativity. Zh. Russ. Fiz.-Khim. O-va Chast. Fiz. 56, 248 (1924)
[15] Tamm I.: Crystal Optics in the Theory of Relativity and its Relationship to the Geometry of a Biquadratic form. Zh. Russ. Fiz.-Khim. O-va Chast. Fiz. 57, 1 (1925)
[16] Dirac P.A.M.: The Quantum Theory of the Electron. Proc. Roy. Soc. A117, 610–624 (1928) · JFM 54.0973.01 · doi:10.1098/rspa.1928.0023
[17] Dirac P.A.M.: The Quantum Theory of the Electron. Part II. Proc. Roy. Soc. A118, 351–361 (1928) · JFM 54.0973.02 · doi:10.1098/rspa.1928.0056
[18] Möglich F.: Zur Quantentheorie des rotierenden Elektrons. Zeit. Phys. 48, 852–867 (1928) · JFM 54.0974.05 · doi:10.1007/BF01331998
[19] Ivanenko D., Landau L.: Zur theorie des magnetischen electrons. Zeit. Phys. 48, 340–348 (1928) · JFM 54.0971.03 · doi:10.1007/BF01339119
[20] Neumann J.: Einige Bemerkungen zur Diracschen Theorie des relativistischen Drehelectrons. Zeit. Phys. 48, 868–881 (1929) · JFM 54.0972.03 · doi:10.1007/BF01331999
[21] B. van der Waerden, Spinoranalyse. Nachr. Akad. Wiss. Gottingen. Math. Physik. Kl. (1929), 100-109 . · JFM 55.0511.09
[22] Juvet G.: Opérateurs de Dirac et Équations de Maxwell. Comm. Math. Helv. 2, 225–235 (1930) · JFM 56.0752.02 · doi:10.1007/BF01214461
[23] Laporte O., Uhlenbeck G.: Application of Spinor Analysis to the Maxwell and Dirac Equations. Phys. Rev. 37, 1380–1397 (1931) · Zbl 0002.09001 · doi:10.1103/PhysRev.37.1380
[24] Yu. Rumer, Spinor Analysis. Moscow 1936, (in Russian).
[25] E. Majorana, Scientific Papers, Unpublished, Deposited at the ”Domus Galileana”. Pisa, quaderno 2, p. 101/1; 3, p. 11, 160; 15, p. 16; 17, p. 83, 159.
[26] Oppenheimer J.: Note on Light Quanta and the Electromagnetic Field. Phys. Rev. 38, 725–746 (1931) · Zbl 0002.30601 · doi:10.1103/PhysRev.38.725
[27] H. Weber, Die partiellen Differential-Gleichungen der mathematischen Physik nach Riemann’s Vorlesungen. Friedrich Vieweg und Sohn. Braunschweig 1901. P. 348. · JFM 32.0782.01
[28] Bialynicki-Birula I.: On the Wave Function of the Photon. Acta Phys. Polon. 86, 97–116 (1994)
[29] Bialynicki-Birula I.: Photon Wave Function. Progress in Optics. 36, 248–294 (1996) [arXiv:quant-ph/050820]
[30] Kurşunoĝlu B.: Complex Orthogonal and Antiorthogonal Representation of Lorentz Group. J. Math. Phys. 2, 22–32 (1961) · Zbl 0163.22901 · doi:10.1063/1.1724209
[31] Macfarlane A.: On the Restricted Lorentz Group and Groups Homomorphically Related to it. J. Math. Phys. 3, 1116–1129 (1962) · Zbl 0115.02603 · doi:10.1063/1.1703854
[32] Macfarlane A.: Dirac Matrices and the Dirac Matrix Description of Lorentz Transformations. Commun. Math. Phys. 2, 133–146 (1966) · Zbl 1222.81290 · doi:10.1007/BF01773348
[33] F. Fedorov, The Lorentz Group. Moscow, 1979. · Zbl 0509.22012
[34] Stratton J.: Electromagnetic Theory. McGraw-Hill, New York (1941) · JFM 67.1119.01
[35] W. Panofsky, M. Phillips, Classical Electricity and Magnetics. Addison- Wesley Publishing Company, 1962. · Zbl 0122.21401
[36] Jackson J.: Classical Electrodynamics. Wiley, New Yor (1975)
[37] Esposito S.: Covariant Majorana Formulation of Electrodynamics. Found. Phys. 28, 231–244 (1998) [arXiv:hep-th/9704144] · doi:10.1023/A:1018752803368
[38] Ivezić T.: True Transformations Relativity and Electrodynamics. Found. Phys. 31, 1139–1183 (2001) · doi:10.1023/A:1017547720033
[39] Ivezić T.: The Proof that Maxwell’s Equations with the 3D E and B are not Covariant upon the Lorentz Transformations but upon the Standard Transformations. The new Lorentz-Invariant Field Equations. Found. Phys. 35, 1585–1615 (2005) · Zbl 1119.78005
[40] Ivezić T.: Lorentz Invariant Majorana Formulation of the Field Equations and Dirac-like Equation for the Free Photon. EJTP (Electronic Journal of Theoretical Physics) 3, 131–142 (2006) · Zbl 1135.81330
[41] Nüñez Yépez H., Salas Brito A., Vargas C.: Electric and Magnetic Four- Vectors in Classical Electrodynamics. Revista Mexicana de Fisica 34, 636 (1988)
[42] de Broglie L.: L’équation d’Ondes du Photon. C. R. Acad. Sci. Paris 199, 445–448 (1934) · Zbl 0009.38202
[43] de Broglie L., Winter M.: Sur le Spin du Photon. C. R. Acad. Sci. Paris 199, 813–816 (1934)
[44] Mercier A.: Expression des équations de l’Électromagnétisme au Moyen des Nombres de Clifford. Thèse de l’Université de Genève. No 953; Arch. Sci. Phys. Nat. Genève 17, 1–34 (1935)
[45] G. Petiau, University of Paris. Thesis (1936); Acad. Roy. de Belg. Classe Sci. Mem. 2 (1936).
[46] Proca A.: Sur les Equations Fondamentales des Particules Élémentaires. C. R. Acad. Sci. Paris 202, 1490–1492 (1936) · JFM 62.1001.02
[47] Duffin R.: On the Characteristic Matrices of Covariant Systems. Phys. Rev. 54, 1114 (1938) · Zbl 0020.09006 · doi:10.1103/PhysRev.54.1114
[48] de Broglie L.: Sur un Cas de Réductibilité en Mécanique Ondulatoire des Particules de Spin 1. C. R. Acad. Sci. Paris 208, 1697–1700 (1939) · JFM 65.1059.02
[49] Kemmer N.: The Particle Aspect of Meson Theory. Proc. Roy. Soc. London. A 173, 91–116 (1939) · Zbl 0023.19003 · doi:10.1098/rspa.1939.0131
[50] Bhabha H.: Classical Theory of Meson. Proc. Roy. Soc. London. A 172, 384 (1939) · Zbl 0022.18704 · doi:10.1098/rspa.1939.0110
[51] Belinfante F.: The Undor Equation of the Meson Field. Physica. 6, 870 (1939) · Zbl 0022.04701 · doi:10.1016/S0031-8914(39)90089-3
[52] Belinfante F.: Spin of Mesons. Physica. 6, 887–898 (1939) · Zbl 0022.04607 · doi:10.1016/S0031-8914(39)90090-X
[53] Taub A.: Spinor Equations for the Meson and their Solution when no Field is Present. Phys. Rev. 56, 799–810 (1939) · Zbl 0061.47301 · doi:10.1103/PhysRev.56.799
[54] de Broglie L.: Champs Réels et Champs Complexes en Théorie Électromagnétique Quantique du Rayonnement. C. R. Acad. Sci. Paris. 211, 41–44 (1940) · Zbl 0025.13801
[55] Schrödinger E.: Maxwell’s and Dirac’s Equations in Expanding Universe. Proc. Roy. Irish. Acad. A 46, 25 (1940) · Zbl 0061.47102
[56] S. Sakata, M. Taketani, On the Wave Equation of the Meson. Proc. Phys. Math. Soc. Japan. 22 (1940), 757-70; Reprinted in: Suppl. Progr. Theor. Phys. 22 (1955), 84. · Zbl 0024.14303
[57] M. Tonnelat, Sur la Théorie du Photon dans un Espace de Riemann. Ann. Phys. N.Y. 1941. Vol. 15. P. 144. · JFM 67.0939.02
[58] Schrödinger E.: Pentads, Tetrads, and Triads of Meson matrices. Proc. Roy. Irish. Acad. A. 48, 135–146 (1943) · Zbl 0060.45311
[59] Schrödinger E.: Systematics of Meson Matrices. Proc. Roy. Irish. Acad. 49, 29 (1943) · Zbl 0060.45307
[60] Kemmer N.: The Algebra of Meson Matrices. Proc. Camb. Phil. Soc. 39, 189–196 (1943) · Zbl 0060.07907 · doi:10.1017/S0305004100017874
[61] Heitler W.: On the Particle Equation of the Meson. Proc. Roy. Irish. Acad. 49, 1 (1943) · Zbl 0060.45401
[62] A. Einstein, V. Bargmann, Bivector Fields. I, II. Annals of Math. 45 (1944), 1-14, 15-23. · Zbl 0060.44310
[63] Proca A.: Sur les Équations Relativistes des Particules Élémentaires. C. R. Acad. Sci. Paris. 223, 270–272 (1946)
[64] Harish-Chandra, On the Algebra of the Meson Matrices. Proc. Camb. Phil. Soc. 43, 414 (1946) · Zbl 0060.45308 · doi:10.1017/S0305004100023641
[65] Yarish-Chandra, The Correspondence Between the Particle and Wave Aspects of the Meson and the Photon. Proc. Roy. Soc. London. A 186, 502–525 (1946) · Zbl 0060.45308 · doi:10.1098/rspa.1946.0061
[66] B. Hoffmann, The Vector Meson Field and Projective Relativity. Phys. Rev. (1947), 72 (1947), 458. · Zbl 0031.37701
[67] Utiyama R.: On the Interaction of Mesons with the Gravitational Field. Progr. in Theor. Phys. 2, 38–62 (1947) · doi:10.1143/PTP.2.38
[68] Mercier A.: Sur les Fondements de l’Électrodynamique Classique (Méthode Axiomatique). Arch. Sci. Phys. Nat. Genà àve. 2, 584–588 (1949)
[69] Imaeda K.: Linearization of Minkowski Space and Five-Dimensional Space. Progress of Theor. Phys. 5, 133–134 (1950) · doi:10.1143/ptp/5.1.133
[70] Fujiwara I.: On the Duffin-Kemmer Algebra. Progr. Theor. Phys. 10, 589–616 (1953) · Zbl 0052.22503 · doi:10.1143/PTP.10.589
[71] Gürsey F.: Dual Invariance of Maxwell’s Tensor. Rev. Fac. Sci. Istanbul. A 19, 154–160 (1954) · Zbl 0058.21503
[72] Gupta S.: Gravitation and Electromagnetism. Phys. Rev. 96, 1683–1685 (1954) · Zbl 0056.44103 · doi:10.1103/PhysRev.96.1683
[73] A. Lichnerowicz, Théories Relativistes de la Gravitation et de l’Électromagnetisme. Paris. 1955. · Zbl 0065.20704
[74] Ohmura T.: A New Formulation on the Electromagnetic Field. Prog. Theor. Phys. 16, 684–685 (1956) · Zbl 0072.45103 · doi:10.1143/PTP.16.684
[75] Borgardt A.: Matrix Aspects of the Boson Theory. Sov. Phys. JETP. 30, 334–341 (1956) · Zbl 0071.42605
[76] Fedorov F.: On the Reduction of Wave Equations for Spin-0 and Spin-1 to the Hamiltonian Form. JETP. 4, 139–141 (1957) · Zbl 0078.19902
[77] Kuohsien T.: Sur les Theories Matricielles du Photon. C. R. Acad. Sci. Paris 245, 141–144 (1957)
[78] Bludman S.: Some Theoretical Consequences of a Particle Having Mass Zero. Phys. Rev. 107, 1163–1168 (1957) · doi:10.1103/PhysRev.107.1163
[79] Good R. Jr.: Particle Aspect of the Electromagnetic Field equations. Phys. Rev. 105, 1914–1919 (1957) · Zbl 0078.21205 · doi:10.1103/PhysRev.105.1914
[80] Moses H.: A Spinor Representation of Maxwell Equations. Nuovo Cimento Suppl. 1, 1–18 (1958) · Zbl 0080.42201 · doi:10.1007/BF02725084
[81] Lomont J.: Dirac-Like Wave Equations for Particles of Zero Rest mass and their Quantization. Phys. Rev. 11, 1710–1716 (1958) · Zbl 0086.22401 · doi:10.1103/PhysRev.111.1710
[82] Borgardt A.: Wave Equatons for a Photon. JETF. 34, 1323–1325 (1958)
[83] Moses E.: Solutions of Maxwell’s Equations in Terms of a Spinor Notation: the Direct and Inverse Problems. Phys. Rev. 113, 1670–1679 (1959) · Zbl 0085.21905 · doi:10.1103/PhysRev.113.1670
[84] Adel da Silveira: Kemmer Wave Equation in Riemann Space. J. Math. Phys. 1, 489–491 (1960) · Zbl 0097.22304 · doi:10.1063/1.1703684
[85] Kemmer N.: On the Theory of Particles of Spin 1. Helv. Phys. Acta. 33, 829–838 (1960) · Zbl 0093.43804
[86] Hjalmars S.: Wave Equations for Scalar and Vector Particles in Gravitational Fields. J. Math. Phys. 2, 663–666 (1961) · Zbl 0100.40606 · doi:10.1063/1.1703753
[87] Kibble T.: Lorentz Invariance and the Gravitational Field. J. Math. Phys. 2, 212–221 (1961) · Zbl 0095.22903 · doi:10.1063/1.1703702
[88] E. Post, Formal structure of Electrodynamics. General Covariance and Electromagnetics. Amsterdam. 1962. · Zbl 0122.45003
[89] Bogush A., Fedorov F.: On Properties of the Duffin-Kemmer Matrices. Doklady AN BSSR 6, 81–85 (1962) (in Russian) · Zbl 0126.44802
[90] Sachs M., Schwebel S.: On Covariant Formulations of the Maxwell-Lorentz Theory of Electromagnetism. J. Math. Phys. 3, 843–848 (1962) · Zbl 0115.42403 · doi:10.1063/1.1724297
[91] J. Ellis, Maxwell’s Equations and Theories of Maxwell Form. Ph.D. thesis. University of London 1964. 417 pages.
[92] Oliver L.: Hamiltonian for a Kemmer Particle in an Electromagnetic Field. Anales de Fisica 64, 407 (1968)
[93] Beckers J., Pirotte C.: Vectorial Meson Equations in Relation to Photon Description. Physica 39, 205 (1968) · doi:10.1016/0031-8914(68)90161-4
[94] Casanova G.: Particules Neutre de Spin 1. C. R. Acad. Sci. Paris. A 268, 673–676 (1969)
[95] Carmeli M.: Group Analysis of Maxwell Equations. J. Math. Phys. 10, 1699–1703 (1969) · doi:10.1063/1.1665016
[96] A. Bogush, To the Theory of Vector Particles. Preprint of IF AN BSSR, (1971).
[97] Lord E.: Six-Dimensional Formulation of Meson Equations. Int. J. Theor. Phys. 5, 339–348 (1972) · doi:10.1007/BF00678224
[98] Moses H.: Photon Wave Functions and the Exact Electromagnetic Matrix eEements for Hydrogenic Atoms. Phys. Rev. A 8, 1710–1721 (1973) · doi:10.1103/PhysRevA.8.1710
[99] Weingarten D.: Complex Symmetries of Electrodynamics. Ann. Phys. 76, 510–548 (1973) · doi:10.1016/0003-4916(73)90045-6
[100] Mignani R., Recami E., Baldo M.: About a Dirac-Like Equation for the Photon, According to E. Majorana. Lett. Nuovo Cimento 11, 568–572 (1974) · doi:10.1007/BF02812391
[101] Newman E.: Maxwell Equations and Complex Minkowski Space. J. Math. Phys. 14, 102–107 (1973) · doi:10.1063/1.1666160
[102] Frankel T.: Maxwell’s Equations. Amer. Math. Mon. 81, 343–349 (1974) · Zbl 0281.53017 · doi:10.2307/2318995
[103] B. Bolotowskij, C. Stoliarov, Contamporain State of Electrodynamics of Moving Medias (Unlimited Medias). Eistein collection. Moskow. (1974), 179-275.
[104] Edmonds J.: Comment on the Dirac-Like Equation for the Photon. Nuovo Cim. Lett. 13, 185–186 (1975) · doi:10.1007/BF02742609
[105] V. I. Strazhev, L. M. Tomil’chik, Electrodynamics with Magnetic Charge. Minsk. 1975.
[106] Da Silveira A.: Invariance algebras of the Dirac and Maxwell Equations. Nouvo Cim. A 56, 385–395 (1980) · doi:10.1007/BF02732090
[107] Jena P., Naik P., Pradhan T.: Photon as the Zero-Mass Limit of DKP Field. J. Phys. A 13, 2975–2978 (1980) · doi:10.1088/0305-4470/13/9/023
[108] Venuri G.A: Geometrical Formulation of eEectrodynamics. Nuovo Cim. A 65, 64–76 (1981) · doi:10.1007/BF02804880
[109] Chow T.: A Dirac-Like Equation for the Photon. J. Phys. A 14, 2173–2174 (1981) · doi:10.1088/0305-4470/14/8/038
[110] V. I. Fushchich, A. G. Nikitin. Symmetries of Maxwell’s Equations. Kiev, 1983; Kluwer. Dordrecht. 1987. · Zbl 0531.35003
[111] Cook R.: Photon Dynamics. Phys. Rev. A 25, 2164–2167 (1982) · doi:10.1103/PhysRevA.25.2164
[112] R. Cook R., Lorentz Covariance of Photon Dynamics. Phys. Rev. A 26 (1982), 2754-2760.
[113] Giannetto E.: A Majorana-Oppenheimer Formulation of Quantum Electrodynamics. Lett. Nuovo Cim. 44, 140–144 (1985) · doi:10.1007/BF02746912
[114] Kidd R., Ardini J., Anton A.: Evolution of the Modern Photon. Am. J. Phys. 57, 27 (1989) · doi:10.1119/1.15862
[115] Recami E.: Possible Physical Meaning of the Photon Wave-Function, According to Ettore Majorana. in Hadronic Mechanics and Non-Potential Interactions, pp. 231–238. Nova Sc. Pub., New York (1990)
[116] Krivsky I., Simulik V.: Foundations of Quantum Electrodynamics in Field Strengths Terms. Naukova Dumk, Kiev (1992) · Zbl 0956.81505
[117] Hillion P.: Spinor Electromagnetism in Isotropic Chiral Media. Adv. Appl. Clifford Alg. 3, 107–120 (1993) · Zbl 0831.15016
[118] Baylis W.E.: Light Polarization: A geometricalgebra Approach. Amer. J. Phys. 61, 534–545 (1993) · Zbl 1219.78007 · doi:10.1119/1.17205
[119] Inagaki T.: Quantum-Mechanical Approach to a Free Photon. Phys. Rev. A 49, 2839–2843 (1994) · doi:10.1103/PhysRevA.49.2839
[120] Sipe J.: Photon Wave Functions. Phys. Rev. A. 52, 1875–1883 (1995) · doi:10.1103/PhysRevA.52.1875
[121] Ghose P.: Relativistic Quantum Mechanics of Spin-0 and Spin-1 Bosons. Found. Phys. 26, 1441–1455 (1996) · doi:10.1007/BF02272366
[122] Gersten A.: Maxwell Equations as the One-Photon Quantum Equation. Found. of Phys. Lett. 12, 291–298 (1998) [arXiv:quant-ph/9911049] · doi:10.1023/A:1021648704289
[123] Dvoeglazov V.: Speculations on the Neutrino Theory of Light. Annales de la Fondation Louis de Broglie 24, 111–127 (1999)
[124] Dvoeglazov V.: Historical Note on Relativistic Theories of Electromagnetism. Apeiron. 5, 69–88 (1998)
[125] Dvoeglazov V.: Generalized Maxwell and Weyl Equations for Massless Particles. Rev. Mex. Fis. 49, 99–103 (2003) [arXiv:math-ph/0102001]
[126] Gsponer A.: On the ”equivalence” of the Maxwell and Dirac Equations. Int. J. Theor. Phys. 41, 689–694 (2002) [arXiv:mathph/0201053] · Zbl 1002.83008 · doi:10.1023/A:1015232427515
[127] Varlamov V.: About Algebraic Foundations of Majorana-Oppenheimer Quantum Electrodynamics and de Broglie-Jordan Neutrino Theory of Light. Ann. Fond. L. de Broglie 27, 273–286 (2003) · Zbl 1329.81385
[128] Khan S.: Maxwell Optics: I. An exact matrix Representation of the Maxwell Equations in a Medium. Phys. Scripta 71, 440–442 (2005) arXiv:physics/0205083 · Zbl 1064.78003 · doi:10.1238/Physica.Regular.071a00440
[129] S. Khan, Maxwell Optics: II. An Exact Formalism. arXiv:physics/0205084.
[130] S. Khan, Maxwell Optics: II. Applications. arXiv:physics/0205085.
[131] S. Donev, Complex Structures in Electrodynamics. arXiv:math-ph/0106008.
[132] Donev S.: From Electromagnetic Duality to Extended Electrodynamics. Annales Fond. L. de Broglie 29, 375–392 (2004) [arXiv:hep-th/0101137] · Zbl 1329.78006
[133] Donev S., Tashkova M.: Extended Electrodynamics: A Brief Review. Proc. R. Soc. Lond. A 450, 281 (1995) [arXiv:hep-th/0403244] · Zbl 0834.35123 · doi:10.1098/rspa.1995.0085
[134] Armour Rollin S. Jr.: Spin-1/2 Maxwell fields., Found. Phys. 34, 815–842 (2004) · Zbl 1170.78315
[135] I. Bialynicki-Birula, Z. Bialynicka-Birula, Beams of Electromagnetic Radiation Carrying Angular Momentum: The Riemann-Silberstein Vector and the Classical-Quantum Correspondence. arXiv:quant-ph/0511011. · Zbl 1266.81144
[136] W. A. Rodrigues, de Oliveira E. Capelas. The Many Faces of Maxwell, Dirac and Einstein Equations. Lecture Notes in Physics 722, Springer (2007). · Zbl 1124.83002
[137] Ovsiyuk E.M., Red’kov V.M.: Spherical waves of spin-1 particle in anti de Sitter space-time. Acta Physica Polonica. B. 41, 1247–1276 (2010) · Zbl 1371.83128
[138] Bogush A.A., Krylov G.G., Ovsiyuk E.M., Red’kov V.M.: Maxwell equations in complex form of Majorana-Oppenheimer, solutions with cylindric symmetry in Riemann S 3 and Lobachevsky H 3 spaces. Ricerche di matematica. 59, 59–96 (2010) · Zbl 1201.83027 · doi:10.1007/s11587-009-0067-8
[139] Campolattaro A.A.: New spinor representation of the Maxwell equations. I: Generalities. Int. J. Theor. Phys. 19, 99–126 (1980) · Zbl 0439.35064 · doi:10.1007/BF00669764
[140] Campolattaro A.A.: New spinor representation of the Maxwell equations. II: Algebraic properties. Int. J. Theor. Phys. 19, 127–138 (1980) · Zbl 0439.35065 · doi:10.1007/BF00669765
[141] Campolattaro A.A.: Generalized Maxwell’s equations and quantum machanics. I: Dirac equation for the free electron. Int. J. Theor. Phys. 20, 141–155 (1990) · Zbl 0705.35137 · doi:10.1007/BF00671324
[142] Campolattaro A.A.: Generalized Maxwell’s equations and quantum machanics. II: Generalized Dirac equation. Int. J. Theor. Phys. 29, 477–482 (1990) · Zbl 0716.35070 · doi:10.1007/BF00673937
[143] Figueiredo V.L., de Capelas Oliveira E., Rodrigues W.A.: Covariant, algebraic, and operator spinors. Int. J. Theor. Phys. 29, 371–395 (1990) · Zbl 0699.53019 · doi:10.1007/BF00674438
[144] Vaz J., Rodrigues W.: Equivalence of Dirac and Maxwell equations and quantum mechanics. Int. J. Theor. Phys. 32, 945–959 (1993) · Zbl 0788.53072 · doi:10.1007/BF01215301
[145] Rodrigues W., Vaz J.: From Electromagnetism to Relativistic Quantum Mechanics. Found. Phys. 28, 789–814 (1998) · doi:10.1023/A:1018854004954
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.