×

Nonlinear disturbance observer-based direct joint control for manipulation of a flexible payload with output constraints. (English) Zbl 1519.93123

Summary: This paper discusses a nonlinear direct joint control scheme for manipulation of a flexible payload by a single-arm system with disturbances, parametric uncertainty and output constraints. The flexible payload can be considered as an Euler-Bernoulli beam. The equations of the coupled rigid-flexible motion are established on the basis of the ordinary differential equations (ODEs) and partial differential equation (PDE), which can avoid system spillover instability. A novel nonlinear disturbance observer-based control approach is proposed to enhance its disturbance attenuation ability. To handle the system parametric uncertainty, we apply adaptive direct joint control to approximate the unknown parameter, which does not require endpoint boundary control. Then a barrier Lyapunov function (BLF) is adopted to eliminate the impact of output restriction. The asymptotic stability of the closed-loop system is rigorously proven by semi-group theory and LaSalle’s invariance principle extended to an infinite-dimensional system. Finally, the performance of the direct joint control is validated via numerical simulations.

MSC:

93C40 Adaptive control/observation systems
93B53 Observers
93C15 Control/observation systems governed by ordinary differential equations
93C20 Control/observation systems governed by partial differential equations
93D20 Asymptotic stability in control theory
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Al-Yahmadi, A. S.; Abdo, J.; Hsia, T. C., Modeling and control of two manipulators handling a flexible object, Journal of the Franklin Institute, 344, 5, 349-361 (2007) · Zbl 1269.93064 · doi:10.1016/j.jfranklin.2006.01.002
[2] Bortolini, M.; Faccio, M.; Galizia, F. G.; Gamberi, M.; Pilati, F., Design, engineering and testing of an innovative adaptive automation assembly system, Assembly Automation, 40, 3, 531-540 (2020) · doi:10.1108/AA-06-2019-0103
[3] Cao, F.; Liu, J., Vibration control for a rigid-flexible manipulator with full state constraints via barrier Lyapunov function, Journal of Sound and Vibration, 406, 4, 237-252 (2017) · doi:10.1016/j.jsv.2017.05.050
[4] Chen, W., Nonlinear disturbance observer-enhanced dynamic inversion control of missiles, Journal of Guidance, Control, and Dynamics, 26, 1, 161-166 (2003) · doi:10.2514/2.5027
[5] Chen, W., Ballance, D. J., Gawthrop, P. J., Gribble, J. J., & O’Reilly, J. (1999, December 7-10). A nonlinear disturbance observer for two link robotic manipulators. Proceedings of the 38th IEEE Conference on Decision and Control.
[6] Chen, W.; Ballance, D. J.; Gawthrop, P. J.; O’Reilly, J., A nonlinear disturbance observer for robotic manipulators, IEEE Transactions on Industrial Electronics, 47, 4, 932-938 (2000) · doi:10.1109/41.857974
[7] Cui, C.; Wang, B.; Zhao, Y.; Zhang, Y.; Xue, L., Risk management for mine closure: A cloud model and hybrid semi-quantitative decision method, Journal of Minerals, Metallurgy and Materials, 27, 8, 1021-1035 (2020) · doi:10.1007/s12613-020-2002-7
[8] Ding, L.; Li, S.; Gao, H.; Chen, C.; Deng, Z., Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50, 7, 2512-2523 (2020) · doi:10.1109/TSMC.6221021
[9] Endo, T.; Matsuno, F.; Jia, Y., Boundary cooperative control by flexible Timoshenko arms, Automatica, 81, 7, 377-380 (2017) · Zbl 1372.93013 · doi:10.1016/j.automatica.2017.04.017
[10] He, W.; Ge, S. S.; Huang, D., Modeling and vibration control for a nonlinear moving string with output constraint, IEEE/ASME Transactions on Mechatronics, 20, 4, 1886-1897 (2015) · doi:10.1109/TMECH.2014.2358500
[11] He, W.; Nie, S.; Meng, T.; Liu, Y., Modeling and vibration control for a moving beam with application in a drilling riser, IEEE Transactions on Control Systems Technology, 25, 3, 1036-1043 (2017) · doi:10.1109/TCST.2016.2577001
[12] Ji, N.; Liu, J., Adaptive neural network control for a nonlinear Euler-Bernoulli beam in three-dimensional space with unknown control direction, International Journal of Robust and Nonlinear Control, 29, 13, 4494-4514 (2019) · Zbl 1426.93128 · doi:10.1002/rnc.v29.13
[13] Ji, N.; Liu, J.; Yang, H., Boundary vibration suppression for a flexible three-dimensional marine riser against unknown sensor and actuator faults, International Journal of Robust and Nonlinear Control, 31, 5, 1438-1451 (2021) · Zbl 1526.93094 · doi:10.1002/rnc.v31.5
[14] Lee, H.; Liang, Y., A coupled-sliding-surface approach for the robust trajectory control of a horizontal two-link rigid/flexible robot, International Journal of Control, 80, 12, 1880-1892 (2007) · Zbl 1152.93440 · doi:10.1080/00207170701383806
[15] Li, X.; Liu, Y.; Li, J.; Xu, Z., Adaptive output-feedback stabilization for PDE-ODE cascaded systems with unknown control coefficient and spatially varying parameter, Journal of Systems Science and Complexity, 34, 1, 298-313 (2021) · Zbl 1460.93082 · doi:10.1007/s11424-020-9159-z
[16] Lin, H.; Zhao, B.; Liu, D.; Alippi, C., Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks, IEEE/CAA Journal of Automatica Sinica, 7, 4, 954-964 (2020) · doi:10.1109/JAS.6570654
[17] Liu, L.; Liu, Y.; Li, D.; Tong, S.; Wang, Z., Barrier lyapunov function based adaptive fuzzy FTC for switched systems and its applications to resistance inductance capacitance circuit system, IEEE Transactions on Cybernetics, 50, 8, 3491-3502 (2020) · doi:10.1109/TCYB.6221036
[18] Liu, L.; Liu, Y.; Tong, S.; Chen, P., Integral barrier lyapunov function based adaptive control for switched nonlinear systems, Science China Information Sciences, 63, 3, 132203:1-132203:14 (2020) · doi:10.1007/s11432-019-2714-7
[19] Liu, S.; Langari, R.; Li, Y., Nonlinear direct joint control for manipulator handling a flexible payload with input constraints, International Journal of Robotics and Automation, 34, 6, 645-653 (2019) · doi:10.2316/J.2019.206-0161
[20] Liu, Y.; Chen, X.; Mei, Y.; Wu, Y., Observer-based boundary control for an asymmetric output-constrained flexible robotic manipulator, Science China Information Sciences, 65, 3, 139203:1-139203:3 (2022) · doi:10.1007/s11432-019-2893-y
[21] Liu, Y.; Sun, D., Stabilizing a flexible beam handled by two manipulators via PD feedback, IEEE Transactions on Automatic Control, 45, 11, 2159-2164 (2000) · Zbl 0989.93073 · doi:10.1109/9.887656
[22] Liu, Z.; Han, Z.; Zhao, Z.; He, W., Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures, Science China Information Sciences, 64, 5, 152208:1-152208:16 (2021) · doi:10.1007/s11432-020-3109-x
[23] Liu, Z.; He, X.; Zhao, Z.; Ahn, C.; Li, H., Vibration control for spatial aerial refueling hoses with bounded actuators, IEEE Transactions on Industrial Electronics, 68, 5, 4209-4217 (2021) · doi:10.1109/TIE.41
[24] Liu, Z.; Liu, J.; He, W., Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint, Automatica, 77, 3, 302-320 (2017) · Zbl 1355.93037 · doi:10.1016/j.automatica.2016.11.002
[25] Liu, Z.; Liu, J.; He, W., Dynamic modeling and vibration control for a nonlinear 3-dimensional flexible manipulator, International Journal of Robust and Nonlinear Control, 28, 13, 3927-3945 (2018) · Zbl 1397.93145 · doi:10.1002/rnc.v28.13
[26] Luo, Z.; Guo, B.; Morgul, O., Stability and stabilization of infinite dimensional systems with applications, 157-161 (1999), Springer · Zbl 0922.93001
[27] Meng, T.; He, W.; He, X., Tracking control of a flexible string system based on iterative learning control, IEEE Transactions on Control System Technology, 29, 1, 436-443 (2021) · doi:10.1109/TCST.87
[28] Mohammadi, A., Marquez, H. J., & Tavakoli, M. (2011, June 5-9). Disturbance observer-based trajectory following control of nonlinear robotic manipulators. Proceedings of the 23rd CANCAM.
[29] Pazy, A., Semigrouops of linear operators and applications to partial differential equations, 14-15 (1983), Springer · Zbl 0516.47023
[30] Qi, N.; Yuan, Q.; Liu, Y.; Huo, M.; Cao, S., Consensus vibration control for large flexible structures of spacecraft with modified positive position feedback control, IEEE Transactions on Control System Technology, 27, 4, 1712-1719 (2019) · doi:10.1109/TCST.87
[31] Rauscher, F.; Sawodny, O., Modeling and control of tower cranes with elastic structure, IEEE Transactions on Control System Technology, 29, 1, 64-79 (2021) · doi:10.1109/TCST.87
[32] Ren, Y.; Chen, M.; Liu, J., Bilateral coordinate boundary adaptive control for a helicopter lifting system with backlash-like hysteresis, SCIENCE CHINA Information Sciences, 63, 1, 119203:1-119203:3 (2020) · doi:10.1007/s11432-018-9636-3
[33] Sun, C.; He, W.; Hong, J., Neural network control of a flexible robotic manipulator using the lumped spring-mass model, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47, 8, 1863-1874 (2017) · doi:10.1109/TSMC.2016.2562506
[34] Tavasoli, A.; Eghtesad, M.; Jafarian, H., Two-time scale control and observer design for trajectory tracking of two cooperating robot manipulators moving a flexible beam, Robotics and Autonomous Systems, 57, 2, 212-221 (2009) · doi:10.1016/j.robot.2008.04.003
[35] Tee, K. P.; Ge, S. S.; Tay, E. H., Barrier lyapunov functions for the control of output-constrained nonlinear systems, Automatica, 45, 4, 918-927 (2009) · Zbl 1162.93346 · doi:10.1016/j.automatica.2008.11.017
[36] Wang, F.; Gao, Y., Advanced studies of flexible robotic manipulators: Modeling, design, control and application (2003), World Scientific · Zbl 1030.93001
[37] Wang, J.; Liu, Y.; Sun, C., Adaptive neural boundary control design for nonlinear flexible distributed parameter systems, IEEE Transactions on Control System Technology, 27, 5, 2085-2099 (2019) · doi:10.1109/TCST.87
[38] Wu, J.; Shang, Y., Exponential stability of the Euler-Bernoulli beam equation with external disturbance and output feedback time-delay, Journal of Systems Science and Complexity, 32, 2, 542-556 (2019) · Zbl 1411.93153 · doi:10.1007/s11424-018-7182-0
[39] Xing, X.; Liu, J., LMI-based boundary and distributed control design for a flexible string subject to disturbance, International Journal of Control, 92, 8, 1959-1969 (2019) · Zbl 1421.93121 · doi:10.1080/00207179.2017.1423392
[40] Xing, X.; Liu, J., Modeling and robust adaptive iterative learning control of a vehicle-based flexible manipulator with uncertainties, International Journal of Robust and Nonlinear Control, 29, 8, 2385-2405 (2019) · Zbl 1418.93135 · doi:10.1002/rnc.v29.8
[41] Yang, H.; Liu, J., Active vibration control for a flexible-link manipulator with input constraint based on a disturbance observer, Asian Journal of Control, 21, 2, 847-855 (2019) · Zbl 1422.93122 · doi:10.1002/asjc.v21.2
[42] Zeng, C.; Yang, C.; Chen, Z., Bio-Inspired robotic impedance adaptation for human-robot collaborative tasks, Science China Information Sciences, 63, 7, 170201:1-170201:10 (2020) · doi:10.1007/s11432-019-2748-x
[43] Zhang, L.; Liu, J., Adaptive boundary control for flexible two-link manipulator based on partial differential equation dynamic model, IET Control Theory and Applications, 7, 1, 43-51 (2013) · doi:10.1049/cth2.v7.1
[44] Zhang, P.; Li, Y., Modeling and control for the system of two manipulators in handling flexible payload based on hinge configuration, Journal of Jilin University (Engineering and Technology Edition), 38, 2, 444-448 (2008) · doi:10.13229/j.cnki.jdxbgxb2008.02.045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.