×

An algorithm for the grade-two rheological model. (English) Zbl 1490.76013

Summary: We develop an algorithm for solving the general grade-two model of non-Newtonian fluids which for the first time includes inflow boundary conditions. The algorithm also allows for both of the rheological parameters to be chosen independently. The proposed algorithm couples a Stokes equation for the velocity with a transport equation for an auxiliary vector-valued function. We prove that this model is well posed using the algorithm that we show converges geometrically in suitable Sobolev spaces for sufficiently small data. We demonstrate computationally that this algorithm can be successfully discretized and that it can converge to solutions for the model parameters of order one. We include in the appendix a description of appropriate boundary conditions for the auxiliary variable in standard geometries.

MSC:

76A05 Non-Newtonian fluids
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] N. Arada, P. Correia and A. Sequeira, Analysis and finite element simulations of a second-order fluid model in a bounded domain. Numer. Methods Part. Differ. Equ. Int. J. 23 (2007) 1468-1500. · Zbl 1127.76007 · doi:10.1002/num.20236
[2] H.A. Barnes, J.F. Hutton and K. Walters, An Introduction to Rheology. Vol. 3. Elsevier (1989). · Zbl 0729.76001
[3] J.-M. Bernard, Solutions globales variationnelles et classiques des fluides de grade deux. C. R. Acad. Sci. Ser. I Math. 327 (1998) 953-958. · Zbl 0921.76006
[4] J.-M. Bernard, Stationary problem of second-grade fluids in three dimensions: existence, uniqueness and regularity. Math. Methods Appl. Sci. 22 (1999) 655-687. · Zbl 0926.35117 · doi:10.1002/(SICI)1099-1476(19990525)22:8<655::AID-MMA56>3.0.CO;2-Z
[5] J.-M. Bernard, Problem of second grade fluids in convex polyhedrons. SIAM J. Math. Anal. 44 (2012) 2018-2038. · Zbl 1251.35078 · doi:10.1137/110852735
[6] J.-M. Bernard, Steady transport equation in the case where the normal component of the velocity does not vanish on the boundary. SIAM J. Math. Anal. 44 (2012) 993-1018. · Zbl 1253.35030 · doi:10.1137/11082052X
[7] J.-M. Bernard, Solutions in H^1 of the steady transport equation in a bounded polygon with a full non-homogeneous velocity. J. Math. Pures App. 107 (2017) 697-736. · Zbl 1368.35067 · doi:10.1016/j.matpur.2016.10.003
[8] J.-M. Bernard, Fully nonhomogeneous problem of two-dimensional second grade fluids. Math. Methods Appl. Sci. 41 (2018) 6772-6792. · Zbl 1405.35155 · doi:10.1002/mma.5191
[9] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. 3rd edition. Springer-Verlag (2008). · Zbl 1135.65042
[10] D. Cioranescu, V. Girault and K.R. Rajagopal, Mechanics and Mathematics of Fluids of the Differential Type. In Vol. 35 of Advances in Mechanics and Mathematics. Springer (2016). · Zbl 1365.76001 · doi:10.1007/978-3-319-39330-8
[11] J.L. Ericksen and R.S. Rivlin, Stress-deformation relations for isotropic materials. Arch. Ration. Mech. Anal. 4 (1955) 323-425. · Zbl 0064.42004
[12] B.A. Gecim, Non-Newtonian effects of multigrade oils on journal bearing performance. Tribol. Trans. 33 (1990) 384-394. · doi:10.1080/10402009008981968
[13] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer Verlag, Berlin (1986). · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[14] V. Girault and L.R. Scott, Finite element discretizations of a two-dimensional grade-two fluid model. ESAIM: M2AN 35 (2001) 1007-1053. · Zbl 1032.76033 · doi:10.1051/m2an:2001147
[15] V. Girault and L.R. Scott, Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition. J. Math. Pures Appl. 78 (1999) 981-1011. · Zbl 0961.35116 · doi:10.1016/S0021-7824(99)00137-3
[16] V. Girault and L.R. Scott, Wellposedness of some Oldroyd models that lack explicit dissipation. Research Report UC/CS TR-2017-04, Dept. Comp. Sci., Univ. Chicago (2017).
[17] D. Gómez-Díaz and J.M. Navaza, Rheology of aqueous solutions of food additives: effect of concentration, temperature and blending. J. Food Eng. 56 (2003) 387-392. · doi:10.1016/S0260-8774(02)00211-X
[18] L.D. Landau and E.M. Lifshitz, Fluid Mechanics. Pergamon Press (1959).
[19] R. Lapasin, Rheology of Industrial Polysaccharides: Theory and Applications. Springer Science & Business Media (2012).
[20] A.S. Lodge, Low-shear-rate rheometry and polymer quality control. Chem. Eng. Commun. 32 (1985) 1-60. · doi:10.1080/00986448508911641
[21] A.S. Lodge, W.G. Pritchard and L.R. Scott, The hole-pressure problem. IMA J. Appl. Math. 46 (1991) 39-66. · Zbl 0718.76022 · doi:10.1093/imamat/46.1-2.39
[22] H. Morgan and L. Ridgway Scott, Towards a unified finite element method for the Stokes equations. SIAM J. Sci. Comput. 40 (2018) A130-A141. · Zbl 1386.76103 · doi:10.1137/16M1103117
[23] M. Nyström, H.R. Tamaddon Jahromi, M. Stading and M.F. Webster, Hyperbolic contraction measuring systems for extensional flow. Mech. Time-Depend. Mater. 21 (2017) 455-479. · doi:10.1007/s11043-017-9337-0
[24] S. Pollock and L. Ridgway Scott, Transport equations with inflow boundary conditions. Submitted (2022). · Zbl 1491.35386
[25] L. Schwartz, Théorie des Distributions. Hermann, Paris (1966). · Zbl 0149.09501
[26] L.R. Scott, C^1 piecewise polynomials satisfying boundary conditions. Research Report UC/CS TR-2019-18, Dept. Comp. Sci., Univ. Chicago (2019).
[27] T.W. Selby, The non-Newtonian characteristics of lubricating oils. ASLE Trans. 1 (1958) 68-81. · doi:10.1080/05698195808972315
[28] P.A. Vasquez, Y. Jin, E. Palmer, D. Hill and M. Gregory Forest, Modeling and simulation of mucus flow in human bronchial epithelial cell cultures - Part I: idealized axisymmetric swirling flow. PLoS Comput. Biol. 12 (2016) 1-28.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.