×

Computational multi-phase convective conjugate heat transfer on overlapping meshes: a quasi-direct coupling approach via Schwarz alternating method. (English) Zbl 1515.76104

Summary: We present a new computational framework to simulate the multi-phase convective conjugate heat transfer (CHT) problems emanating from realistic manufacturing processes. The paper aims to address the challenges of boundary-fitted and immersed boundary approaches, which cannot simultaneously achieve fluid-solid interface accuracy and geometry-flexibility in simulating this class of multi-physics systems. The method development is built on a stabilized Arbitrary Lagrangian-Eulerian (ALE)-based finite element thermal multi-phase formulation, which is discretized by overlapping one boundary-fitted mesh and non-boundary-fitted mesh with a quasi-direct coupling approach via Schwarz alternating method. The framework utilizes a volume-of-fluid (VoF)-based multi-phase flow model coupled with a thermodynamics model with phase transitions to capture the conjugate heat transfer between the solid and multi-phase flows and the multi-stage boiling and condensation phenomena. The quasi-direct coupling approach allows the exact and automatic enforcement of temperature and heat-flux compatibility at the fluid-solid interface with large property discontinuities. From the perspective of method development, the proposed framework fully exploits boundary-fitted approach’s strength in resolving fluid-solid interface and boundary layers and immersed boundary approach’s geometry flexibility in handling moving objects while circumventing each individual’s limitations. From the perspective of industry applications, such as water quenching processes, the resulting model can enable accurate temperature prediction directly from process parameters without invoking the conventional empirical heat transfer coefficient (HTC)-based approach that requires intensive calibration. We present the mathematical formulation and numerical implementation in detail and demonstrate the claimed features of the proposed framework through a set of benchmark problems and real-world water quenching processes. The accuracy of the proposed framework is carefully assessed by comparing the prediction with other computational results and experimental measurements.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76R05 Forced convection
80A19 Diffusive and convective heat and mass transfer, heat flow
Full Text: DOI

References:

[1] Luikov, A.; Perelman, T.; Levitin, R.; Gdalevich, L., Heat transfer from a plate in a compressible gas flow, Int J Heat Mass Transf, 13, 8, 1261-1270 (1970) · Zbl 0201.29105 · doi:10.1016/0017-9310(70)90067-0
[2] Xiao, B.; Wang, Q.; Jadhav, P.; Li, K., An experimental study of heat transfer in aluminum castings during water quenching, J Mater Process Technol, 210, 14, 2023-2028 (2010) · doi:10.1016/j.jmatprotec.2010.07.026
[3] Lua J, Yan J, Li P, Zhao Z, Karuppiah A, Stuebner M (2021) Novel multi-physics-based modeling of a quenching process with thermal-metallurgical-mechanical interactions in aluminum components, in: 77th Annual Vertical Flight Society Forum and Technology Display: The Future of Vertical Flight, FORUM 2021, Vertical Flight Society
[4] Hughes, TJR; Liu, WK; Zimmermann, TK, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput Methods Appl Mech Eng, 29, 329-349 (1981) · Zbl 0482.76039 · doi:10.1016/0045-7825(81)90049-9
[5] Takizawa, K.; Bazilevs, Y.; Tezduyar, T., Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling, Archives of Computational Methods in Engineering, 19, 2, 171-225 (2012) · Zbl 1354.92023 · doi:10.1007/s11831-012-9071-3
[6] Bazilevs, Y.; Hsu, M.; Takizawa, K.; Tezduyar, T., ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction, Math Models Methods Appl Sci, 22, supp02, 1230002 (2012) · Zbl 1404.76187 · doi:10.1142/S0218202512300025
[7] Calderer, R.; Zhu, L.; Gibson, R.; Masud, A., Residual-based turbulence models and arbitrary lagrangian-eulerian framework for free surface flows, Math Models Methods Appl Sci, 25, 12, 2287-2317 (2015) · Zbl 1329.76136 · doi:10.1142/S0218202515400096
[8] Tezduyar, TE; Sathe, S.; Pausewang, J.; Schwaab, M.; Christopher, J.; Crabtree, J., Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods, Comput Mech, 43, 39-49 (2008) · Zbl 1310.74049 · doi:10.1007/s00466-008-0261-7
[9] Johnson, AA; Tezduyar, TE, Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput Methods Appl Mech Eng, 119, 73-94 (1994) · Zbl 0848.76036 · doi:10.1016/0045-7825(94)00077-8
[10] Hsu, M-C; Bazilevs, Y., Fluid-structure interaction modeling of wind turbines: simulating the full machine, Comput Mech (2012) · Zbl 1311.74038 · doi:10.1007/s00466-012-0772-0
[11] Peskin, CS, Flow patterns around heart valves: a numerical method, J Comput Phys, 10, 2, 252-271 (1972) · Zbl 0244.92002 · doi:10.1016/0021-9991(72)90065-4
[12] Parvizian, J.; Düster, A.; Rank, E., Finite cell method: h- and p- extension for embedded domain methods in solid mechanics, Comput Mech, 41, 122-133 (2007) · Zbl 1162.74506 · doi:10.1007/s00466-007-0173-y
[13] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput Methods Appl Mech Eng, 197, 45-48, 3768-3782 (2008) · Zbl 1194.74517 · doi:10.1016/j.cma.2008.02.036
[14] Xu, F.; Schillinger, D.; Kamensky, D.; Varduhn, V.; Wang, C.; Hsu, M., The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries, Computers & Fluids, 141, 135-154 (2016) · Zbl 1390.76372 · doi:10.1016/j.compfluid.2015.08.027
[15] Main, A.; Scovazzi, G., The shifted boundary method for embedded domain computations. part i: Poisson and stokes problems,, J Comput Phys, 372, 972-995 (2018) · Zbl 1415.76457 · doi:10.1016/j.jcp.2017.10.026
[16] Main, A.; Scovazzi, G., The shifted boundary method for embedded domain computations. part ii: Linear advection-diffusion and incompressible navier-stokes equations,, J Comput Phys, 372, 996-1026 (2018) · Zbl 1415.76458 · doi:10.1016/j.jcp.2018.01.023
[17] Song, T.; Main, A.; Scovazzi, G.; Ricchiuto, M., The shifted boundary method for hyperbolic systems: Embedded domain computations of linear waves and shallow water flows, J Comput Phys, 369, 45-79 (2018) · Zbl 1392.76010 · doi:10.1016/j.jcp.2018.04.052
[18] Li, K.; Atallah, N.; Main, A.; Scovazzi, G., The shifted interface method: A flexible approach to embedded interface computations, Int J Numer Meth Eng, 121, 3, 492-518 (2020) · Zbl 07843207 · doi:10.1002/nme.6231
[19] Colomés, O.; Main, A.; Nouveau, L.; Scovazzi, G., A weighted shifted boundary method for free surface flow problems, J Comput Phys, 424 (2021) · Zbl 07508445 · doi:10.1016/j.jcp.2020.109837
[20] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on nitsche’s method, for elliptic interface problems, Comput Methods Appl Mech Eng, 191, 47-48, 5537-5552 (2002) · Zbl 1035.65125 · doi:10.1016/S0045-7825(02)00524-8
[21] Bazilevs, Y.; Kamran, K.; Moutsanidis, G.; Benson, DJ; Oñate, E., A new formulation for air-blast fluid-structure interaction using an immersed approach, Part I: basic methodology and FEM-based simulations, Computational Mechanics, 60, 1, 83-100 (2017) · Zbl 1386.74046
[22] Bazilevs, Y.; Moutsanidis, G.; Bueno, J.; Kamran, K.; Kamensky, D.; Hillman, MC; Gomez, H.; Chen, JS, A new formulation for air-blast fluid-structure interaction using an immersed approach: Part II-coupling of IGA and meshfree discretizations, Comput Mech, 60, 1, 101-116 (2017) · Zbl 1386.74047 · doi:10.1007/s00466-017-1395-2
[23] Behzadinasab, M.; Moutsanidis, G.; Trask, N.; Foster, J.; Bazilevs, Y., Coupling of iga and peridynamics for air-blast fluid-structure interaction using an immersed approach, Forces in Mechanics, 4 (2021) · doi:10.1016/j.finmec.2021.100045
[24] Moutsanidis, G.; Koester, J.; Tupek, M.; Chen, J.; Bazilevs, Y., Treatment of near-incompressibility in meshfree and immersed-particle methods, Computational particle mechanics, 7, 2, 309-327 (2020) · doi:10.1007/s40571-019-00238-z
[25] Moutsanidis, G.; Kamensky, D.; Chen, J.; Bazilevs, Y., Hyperbolic phase field modeling of brittle fracture: Part ii-immersed iga-rkpm coupling for air-blast-structure interaction, J Mech Phys Solids, 121, 114-132 (2018) · doi:10.1016/j.jmps.2018.07.008
[26] Liu, WK; Liu, Y.; Farrell, D.; Zhang, L.; Wang, XS; Fukui, Y.; Patankar, N.; Zhang, Y.; Bajaj, C.; Lee, J., Immersed finite element method and its applications to biological systems, Comput Methods Appl Mech Eng, 195, 13-16, 1722-1749 (2006) · Zbl 1178.76232 · doi:10.1016/j.cma.2005.05.049
[27] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W., Immersed finite element method, Comput Methods Appl Mech Eng, 193, 21-22, 2051-2067 (2004) · Zbl 1067.76576 · doi:10.1016/j.cma.2003.12.044
[28] Zhang LT, j. v. n. p. y. p. Gay M Immersed finite element method for fluid-structure interactions
[29] Wang, X.; Zhang, L., Interpolation functions in the immersed boundary and finite element methods, Comput Mech, 45, 4, 321-334 (2010) · Zbl 1362.74035 · doi:10.1007/s00466-009-0449-5
[30] Wang, X.; Zhang, L.; Liu, W., On computational issues of immersed finite element methods, J Comput Phys, 228, 7, 2535-2551 (2009) · Zbl 1158.74049 · doi:10.1016/j.jcp.2008.12.012
[31] Wang, X.; Zhang, L., Modified immersed finite element method for fully-coupled fluid-structure interactions, Comput Methods Appl Mech Eng, 267, 150-169 (2013) · Zbl 1286.74034 · doi:10.1016/j.cma.2013.07.019
[32] Schillinger, D.; Dede, L.; Scott, MA; Evans, J.; Borden, M.; Rank, E.; Hughes, T., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of nurbs, immersed boundary methods, and t-spline cad surfaces, Comput Methods Appl Mech Eng, 249, 116-150 (2012) · Zbl 1348.65055 · doi:10.1016/j.cma.2012.03.017
[33] Hsu, M-C; Kamensky, D.; Xu, F.; Kiendl, J.; Wang, C.; Wu, MCH; Mineroff, J.; Reali, A.; Bazilevs, Y.; Sacks, MS, Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models, Comput Mech, 55, 1211-1225 (2015) · Zbl 1325.74048 · doi:10.1007/s00466-015-1166-x
[34] Kamensky, D.; Hsu, M-C; Schillinger, D.; Evans, JA; Aggarwal, A.; Bazilevs, Y.; Sacks, MS; Hughes, TJR, An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves, Comput Methods Appl Mech Eng, 284, 1005-1053 (2015) · Zbl 1423.74273 · doi:10.1016/j.cma.2014.10.040
[35] Zhu, Q.; Xu, F.; Xu, S.; Hsu, M.; Yan, J., An immersogeometric formulation for free-surface flows with application to marine engineering problems, Comput Methods Appl Mech Eng, 361 (2020) · Zbl 1442.76019 · doi:10.1016/j.cma.2019.112748
[36] Volkov, E., The method of composite meshes for finite and infinite regions with piecewise smooth boundary, Trudy Matematicheskogo Instituta imeni VA Steklova, 96, 117-148 (1968) · Zbl 0207.09502
[37] Henshaw, W., A fourth-order accurate method for the incompressible navier-stokes equations on overlapping grids, J Comput Phys, 113, 1, 13-25 (1994) · Zbl 0808.76059 · doi:10.1006/jcph.1994.1114
[38] Henshaw, W.; Chand, K., A composite grid solver for conjugate heat transfer in fluid-structure systems, J Comput Phys, 228, 10, 3708-3741 (2009) · Zbl 1396.80006 · doi:10.1016/j.jcp.2009.02.007
[39] Appelö, D.; Banks, J.; Henshaw, W.; Schwendeman, D., Numerical methods for solid mechanics on overlapping grids: Linear elasticity, J Comput Phys, 231, 18, 6012-6050 (2012) · Zbl 1277.74005 · doi:10.1016/j.jcp.2012.04.008
[40] Koblitz, A.; Lovett, S.; Nikiforakis, N.; Henshaw, W., Direct numerical simulation of particulate flows with an overset grid method, J Comput Phys, 343, 414-431 (2017) · Zbl 1380.76082 · doi:10.1016/j.jcp.2017.04.058
[41] Meng, F.; Banks, J.; Henshaw, W.; Schwendeman, D., Fourth-order accurate fractional-step imex schemes for the incompressible navier-stokes equations on moving overlapping grids, Comput Methods Appl Mech Eng, 366 (2020) · Zbl 1442.76079 · doi:10.1016/j.cma.2020.113040
[42] MEAKIN R (1993) Moving body overset grid methods for complete aircraft tiltrotor simulations, in: 11th Computational Fluid Dynamics Conference, p. 3350
[43] Chan, W., Overset grid technology development at nasa ames research center, Computers & Fluids, 38, 3, 496-503 (2009) · doi:10.1016/j.compfluid.2008.06.009
[44] Chandar, D.; Damodaran, M., Numerical study of the free flight characteristics of a flapping wing in low reynolds numbers, AIAA J. Aircraft, 47, 1, 141-150 (2010) · doi:10.2514/1.44456
[45] Lani, A.; Sjögreen, B.; Yee, H.; Henshaw, W., Variable high-order multiblock overlapping grid methods for mixed steady and unsteady multiscale viscous flows, part ii: hypersonic nonequilibrium flows, Communications in Computational Physics, 13, 2, 583-602 (2013) · Zbl 1373.76219 · doi:10.4208/cicp.240811.090312a
[46] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE, Computational fluid-structure interaction: methods and applications (2013), Hoboken: Wiley, Hoboken · Zbl 1286.74001 · doi:10.1002/9781118483565
[47] De Schepper, S.; Heynderickx, G.; Marin, G., Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker, Computers & Chemical Engineering, 33, 1, 122-132 (2009) · doi:10.1016/j.compchemeng.2008.07.013
[48] De Schepper, S.; Heynderickx, G.; Marin, G., Cfd modeling of all gas-liquid and vapor-liquid flow regimes predicted by the baker chart, Chem Eng J, 138, 1-3, 349-357 (2008) · doi:10.1016/j.cej.2007.06.007
[49] Hughes, T.; Mallet, M., A new finite element formulation for computational fluid dynamics: Iv. a discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput Methods Appl Mech Eng, 58, 3, 329-336 (1986) · Zbl 0587.76120 · doi:10.1016/0045-7825(86)90153-2
[50] Tezduyar, TE; Senga, M., Stabilization and shock-capturing parameters in supg formulation of compressible flows, Comput Methods Appl Mech Eng, 195, 13-16, 1621-1632 (2006) · Zbl 1122.76061 · doi:10.1016/j.cma.2005.05.032
[51] Bazilevs, Y.; Hughes, TJR, Weak imposition of Dirichlet boundary conditions in fluid mechanics, Computers & Fluids, 36, 12-26 (2007) · Zbl 1115.76040 · doi:10.1016/j.compfluid.2005.07.012
[52] Brooks, AN; Hughes, TJR, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 32, 199-259 (1982) · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[53] Tezduyar, TE, Stabilized finite element formulations for incompressible flow computations, Adv Appl Mech, 28, 1-44 (1992) · Zbl 0747.76069
[54] Hughes, T.; Franca, L.; Hulbert, G., A new finite element formulation for computational fluid dynamics : Viii. the galerkin/least-squares method for advective-diffusive equations,, Comput Methods Appl Mech Eng, 73, 2, 173-189 (1989) · Zbl 0697.76100 · doi:10.1016/0045-7825(89)90111-4
[55] Harari, I.; Hughes, T., What are c and h?: Inequalities for the analysis and design of finite element methods, Comput Methods Appl Mech Eng, 97, 2, 157-192 (1992) · Zbl 0764.73083 · doi:10.1016/0045-7825(92)90162-D
[56] Bazilevs, Y.; Calo, VM; Hughes, TJR; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput Mech, 43, 3-37 (2008) · Zbl 1169.74015 · doi:10.1007/s00466-008-0315-x
[57] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE, Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling, Archives of Computational Methods in Engineering, 19, 171-225 (2012) · Zbl 1354.92023 · doi:10.1007/s11831-012-9071-3
[58] Bazilevs, Y.; Hsu, M-C; Takizawa, K.; Tezduyar, TE, ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction, Math Models Methods Appl Sci, 22, supp02, 1230002 (2012) · Zbl 1404.76187 · doi:10.1142/S0218202512300025
[59] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE, Computational Fluid-Structure Interaction: Methods and Applications, Wiley (2013) · Zbl 1286.74001 · doi:10.1002/9781118483565
[60] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE, Challenges and directions in computational fluid-structure interaction, Math Models Methods Appl Sci, 23, 215-221 (2013) · Zbl 1261.76025 · doi:10.1142/S0218202513400010
[61] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE, New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods, Math Models Methods Appl Sci, 25, 2217-2226 (2015) · Zbl 1329.76007 · doi:10.1142/S0218202515020029
[62] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE, Computational analysis methods for complex unsteady flow problems, Math Models Methods Appl Sci, 29, 825-838 (2019) · Zbl 1425.76128 · doi:10.1142/S0218202519020020
[63] Takizawa, K.; Tezduyar, TE, Computational methods for parachute fluid-structure interactions, Archives of Computational Methods in Engineering, 19, 125-169 (2012) · Zbl 1354.76113 · doi:10.1007/s11831-012-9070-4
[64] Takizawa, K.; Fritze, M.; Montes, D.; Spielman, T.; Tezduyar, TE, Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity, Comput Mech, 50, 835-854 (2012) · doi:10.1007/s00466-012-0761-3
[65] Takizawa, K.; Tezduyar, TE; Boben, J.; Kostov, N.; Boswell, C.; Buscher, A., Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity, Comput Mech, 52, 1351-1364 (2013) · Zbl 1398.74097 · doi:10.1007/s00466-013-0880-5
[66] Takizawa, K.; Tezduyar, TE; Boswell, C.; Tsutsui, Y.; Montel, K., Special methods for aerodynamic-moment calculations from parachute FSI modeling, Comput Mech, 55, 1059-1069 (2015) · doi:10.1007/s00466-014-1074-5
[67] Kalro, V.; Tezduyar, TE, A parallel 3D computational method for fluid-structure interactions in parachute systems, Comput Methods Appl Mech Eng, 190, 321-332 (2000) · Zbl 0993.76044 · doi:10.1016/S0045-7825(00)00204-8
[68] Zhu, Q.; Yan, J.; Tejada-Martínez, A.; Bazilevs, Y., Variational multiscale modeling of langmuir turbulent boundary layers in shallow water using isogeometric analysis, Mech Res Commun, 108 (2020) · doi:10.1016/j.mechrescom.2020.103570
[69] Ravensbergen, M.; Helgedagsrud, TA; Bazilevs, Y.; Korobenko, A., A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains, Comput Methods Appl Mech Eng, 368 (2020) · Zbl 1506.86010 · doi:10.1016/j.cma.2020.113182
[70] Yan, J.; Korobenko, A.; Tejada-Martinez, AE; Golshan, R.; Bazilevs, Y., A new variational multiscale formulation for stratified incompressible turbulent flows, Computers & Fluids, 158, 150-156 (2017) · Zbl 1390.76107 · doi:10.1016/j.compfluid.2016.12.004
[71] Cen, H.; Zhou, Q.; Korobenko, A., Wall-function-based weak imposition of dirichlet boundary condition for stratified turbulent flows, Computers & Fluids, 234 (2022) · Zbl 1521.76175 · doi:10.1016/j.compfluid.2021.105257
[72] Bazilevs, Y.; Hsu, M-C; Akkerman, I.; Wright, S.; Takizawa, K.; Henicke, B.; Spielman, T.; Tezduyar, TE, 3D simulation of wind turbine rotors at full scale, Part I: Geometry modeling and aerodynamics, International Journal for Numerical Methods in Fluids, 65, 207-235 (2011) · Zbl 1428.76086 · doi:10.1002/fld.2400
[73] Takizawa, K.; Henicke, B.; Tezduyar, TE; Hsu, M-C; Bazilevs, Y., Stabilized space-time computation of wind-turbine rotor aerodynamics, Comput Mech, 48, 333-344 (2011) · Zbl 1398.76127 · doi:10.1007/s00466-011-0589-2
[74] Takizawa, K.; Henicke, B.; Montes, D.; Tezduyar, TE; Hsu, M-C; Bazilevs, Y., Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics, Comput Mech, 48, 647-657 (2011) · Zbl 1334.74032 · doi:10.1007/s00466-011-0614-5
[75] Takizawa, K.; Tezduyar, TE; McIntyre, S.; Kostov, N.; Kolesar, R.; Habluetzel, C., Space-time VMS computation of wind-turbine rotor and tower aerodynamics, Comput Mech, 53, 1-15 (2014) · Zbl 1398.76129 · doi:10.1007/s00466-013-0888-x
[76] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Hsu, M-C; Øiseth, O.; Mathisen, KM; Kostov, N.; McIntyre, S., Engineering analysis and design with ALE-VMS and space-time methods, Archives of Computational Methods in Engineering, 21, 481-508 (2014) · Zbl 1348.74104 · doi:10.1007/s11831-014-9113-0
[77] Takizawa, K., Computational engineering analysis with the new-generation space-time methods, Comput Mech, 54, 193-211 (2014) · doi:10.1007/s00466-014-0999-z
[78] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE; Hsu, M-C; Kostov, N.; McIntyre, S., Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods, Archives of Computational Methods in Engineering, 21, 359-398 (2014) · Zbl 1348.74095 · doi:10.1007/s11831-014-9119-7
[79] Takizawa, K.; Tezduyar, TE; Mochizuki, H.; Hattori, H.; Mei, S.; Pan, L.; Montel, K., Space-time VMS method for flow computations with slip interfaces (ST-SI), Math Models Methods Appl Sci, 25, 2377-2406 (2015) · Zbl 1329.76345 · doi:10.1142/S0218202515400126
[80] Otoguro, Y.; Mochizuki, H.; Takizawa, K.; Tezduyar, TE, Space-time variational multiscale isogeometric analysis of a tsunami-shelter vertical-axis wind turbine, Comput Mech, 66, 1443-1460 (2020) · Zbl 1468.74079 · doi:10.1007/s00466-020-01910-5
[81] Ravensbergen, M.; Bayram, AM; Korobenko, A., The actuator line method for wind turbine modelling applied in a variational multiscale framework, Comput Fluids, 201 (2020) · Zbl 1519.76158 · doi:10.1016/j.compfluid.2020.104465
[82] Korobenko, A.; Hsu, M-C; Akkerman, I.; Bazilevs, Y., Aerodynamic simulation of vertical-axis wind turbines, J Appl Mech, 81 (2013) · doi:10.1115/1.4024415
[83] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J.; Kinzel, M.; Dabiri, JO, FSI modeling of vertical-axis wind turbines, J Appl Mech, 81 (2014) · doi:10.1115/1.4027466
[84] Korobenko, A.; Bazilevs, Y.; Takizawa, K.; Tezduyar, TE; Tezduyar, TE, Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines, Frontiers in Computational Fluid-Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty - 2018, Modeling and Simulation in Science, Engineering and Technology, 253-336 (2018), Berlin: Springer, Berlin · doi:10.1007/978-3-319-96469-0_7
[85] Korobenko, A.; Bazilevs, Y.; Takizawa, K.; Tezduyar, TE, Computer modeling of wind turbines: 1, ALE-VMS and ST-VMS aerodynamic and FSI analysis, Archives of Computational Methods in Engineering, 26, 1059-1099 (2019) · doi:10.1007/s11831-018-9292-1
[86] Bayram, AM; Bear, C.; Bear, M.; Korobenko, A., Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method, Comput Fluids, 200 (2020) · Zbl 1519.76270 · doi:10.1016/j.compfluid.2020.104432
[87] Yan, J.; Korobenko, A.; Deng, X.; Bazilevs, Y., Computational free-surface fluid-structure interaction with application to floating offshore wind turbines, Comput Fluids, 141, 155-174 (2016) · Zbl 1390.76376 · doi:10.1016/j.compfluid.2016.03.008
[88] Yan J, Deng X, Xu F, Xu S, Zhu Q (2020) Numerical simulations of two back-to-back horizontal axis tidal stream turbines in free-surface flows. Journal of Applied Mechanics 87(6). doi:10.1115/1.4046317
[89] Kuraishi, T.; Zhang, F.; Takizawa, K.; Tezduyar, TE, Wind turbine wake computation with the st-vms method, isogeometric discretization and multidomain method: I. computational framework, Comput Mech, 68, 1, 113-130 (2021) · Zbl 1480.76075 · doi:10.1007/s00466-021-02022-4
[90] Kuraishi, T.; Zhang, F.; Takizawa, K.; Tezduyar, TE, Wind turbine wake computation with the st-vms method, isogeometric discretization and multidomain method: Ii. spatial and temporal resolution,, Comput Mech, 68, 1, 175-184 (2021) · Zbl 1496.76086 · doi:10.1007/s00466-021-02025-1
[91] Ravensbergen, M.; Mohamed, A.; Korobenko, A., The actuator line method for wind turbine modelling applied in a variational multiscale framework, Computers & Fluids, 201 (2020) · Zbl 1519.76158 · doi:10.1016/j.compfluid.2020.104465
[92] Mohamed, A.; Bear, C.; Bear, M.; Korobenko, A., Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method, Computers & Fluids, 200 (2020) · Zbl 1519.76270 · doi:10.1016/j.compfluid.2020.104432
[93] Bayram A, Korobenko A (2020) Variational multiscale framework for cavitating flows, Computational Mechanics 1-19
[94] Yan, J.; Deng, X.; Korobenko, A.; Bazilevs, Y., Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines, Comput Fluids, 158, 157-166 (2017) · Zbl 1390.86027 · doi:10.1016/j.compfluid.2016.06.016
[95] Zhu, Q.; Yan, J., A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows, Computers & Mathematics with Applications, 81, 532-546 (2021) · Zbl 1460.76564 · doi:10.1016/j.camwa.2019.07.034
[96] Bayram, AM; Korobenko, A., Variational multiscale framework for cavitating flows, Comput Mech, 66, 49-67 (2020) · Zbl 1465.76051 · doi:10.1007/s00466-020-01840-2
[97] Cen, H.; Zhou, Q.; Korobenko, A., Variational multiscale framework for cavitating flows, Computers & Fluids, 214 (2021) · Zbl 1521.76322 · doi:10.1016/j.compfluid.2020.104765
[98] Codoni, D.; Moutsanidis, G.; Hsu, M-C; Bazilevs, Y.; Johansen, C.; Korobenko, A., Stabilized methods for high-speed compressible flows: toward hypersonic simulations, Comput Mech, 67, 785-809 (2021) · Zbl 1490.76134 · doi:10.1007/s00466-020-01963-6
[99] Terahara, T.; Takizawa, K.; Tezduyar, TE; Bazilevs, Y.; Hsu, M-C, Heart valve isogeometric sequentially-coupled FSI analysis with the space-time topology change method, Comput Mech, 65, 1167-1187 (2020) · Zbl 1462.74119 · doi:10.1007/s00466-019-01813-0
[100] Hsu, M-C; Kamensky, D.; Bazilevs, Y.; Sacks, MS; Hughes, TJR, Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput Mech, 54, 1055-1071 (2014) · Zbl 1311.74039 · doi:10.1007/s00466-014-1059-4
[101] Johnson, EL; Wu, MCH; Xu, F.; Wiese, NM; Rajanna, MR; Herrema, AJ; Ganapathysubramanian, B.; Hughes, TJR; Sacks, MS; Hsu, M-C, Thinner biological tissues induce leaflet flutter in aortic heart valve replacements, Proc Natl Acad Sci, 117, 19007-19016 (2020) · doi:10.1073/pnas.2002821117
[102] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Hsu, M-C, Computational cardiovascular flow analysis with the variational multiscale methods, Journal of Advanced Engineering and Computation, 3, 366-405 (2019) · doi:10.25073/jaec.201932.245
[103] Kuraishi, T.; Terahara, T.; Takizawa, K.; Tezduyar, T., Computational flow analysis with boundary layer and contact representation: I. tire aerodynamics with road contact, J Mech, 38, 77-87 (2022) · doi:10.1093/jom/ufac009
[104] Terahara, T.; Kuraishi, T.; Takizawa, K.; Tezduyar, T., Computational flow analysis with boundary layer and contact representation: Ii. heart valve flow with leaflet contact,, J Mech, 38, 185-194 (2022) · doi:10.1093/jom/ufac013
[105] Otoguro, Y.; Takizawa, K.; Tezduyar, TE; Nagaoka, K.; Avsar, R.; Zhang, Y., Space-time VMS flow analysis of a turbocharger turbine with isogeometric discretization: Computations with time-dependent and steady-inflow representations of the intake/exhaust cycle, Comput Mech, 64, 1403-1419 (2019) · Zbl 1467.76044 · doi:10.1007/s00466-019-01722-2
[106] Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Mei S (2019) Turbocharger turbine and exhaust manifold flow computation with the Space-Time Variational Multiscale Method and Isogeometric Analysis. Computers & Fluids 179:764-776. doi:10.1016/j.compfluid.2018.05.019 · Zbl 1411.76070
[107] Xu, F.; Moutsanidis, G.; Kamensky, D.; Hsu, M-C; Murugan, M.; Ghoshal, A.; Bazilevs, Y., Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling, Computers & Fluids, 158, 201-220 (2017) · Zbl 1390.76805 · doi:10.1016/j.compfluid.2017.02.006
[108] Takizawa, K.; Tezduyar, TE; Kuraishi, T., Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires, Math Models Methods Appl Sci, 25, 2227-2255 (2015) · Zbl 1325.76139 · doi:10.1142/S0218202515400072
[109] Kuraishi T, Takizawa K, Tabata S, Asada S, Tezduyar TE (2014) Multiscale thermo-fluid analysis of a tire. In: Proceedings of the 19th Japan Society of Computational Engineering and Science Conference, Hiroshima, Japan
[110] Takizawa K, Tezduyar TE, Kuraishi T (2016) Flow analysis around a tire with actual geometry, road contact and deformation, in preparation
[111] Kuraishi, T.; Takizawa, K.; Tezduyar, TE; Tezduyar, TE, Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation, Frontiers in Computational Fluid-Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty - 2018, Modeling and Simulation in Science, Engineering and Technology, 337-376 (2018), Berlin: Springer, Berlin · doi:10.1007/978-3-319-96469-0_8
[112] Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Tire aerodynamics with actual tire geometry, road contact and tire deformation, Comput Mech, 63, 1165-1185 (2019) · Zbl 1469.74041 · doi:10.1007/s00466-018-1642-1
[113] Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film, Comput Mech, 64, 1699-1718 (2019) · Zbl 1465.74130 · doi:10.1007/s00466-019-01746-8
[114] Yan, J.; Korobenko, A.; Deng, X.; Bazilevs, Y., Computational free-surface fluid-structure interaction with application to floating offshore wind turbines, Computers & Fluids, 141, 155-174 (2016) · Zbl 1390.76376 · doi:10.1016/j.compfluid.2016.03.008
[115] Hsu, M.; Akkerman, I.; Bazilevs, Y., Wind turbine aerodynamics using ALE-VMS: Validation and the role of weakly enforced boundary conditions, Comput Mech, 50, 4, 499-511 (2012) · doi:10.1007/s00466-012-0686-x
[116] Zhu, Q.; Yan, J., A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes, Comput Methods Appl Mech Eng, 383 (2021) · Zbl 1506.76195 · doi:10.1016/j.cma.2021.113910
[117] Liu, J.; Lan, I.; Tikenogullari, O.; Marsden, A., A note on the accuracy of the generalized-\( \alpha\) scheme for the incompressible navier-stokes equations, Int J Numer Meth Eng, 122, 2, 638-651 (2021) · Zbl 07863084 · doi:10.1002/nme.6550
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.