×

Enhancing non-melonic triangulations: a tensor model mixing melonic and planar maps. (English) Zbl 1329.81258

Summary: Ordinary tensor models of rank \(D \geq 3\) are dominated at large \(N\) by tree-like graphs, known as melonic triangulations. We here show that non-melonic contributions can be enhanced consistently, leading to different types of large \(N\) limits. We first study the most generic quartic model at \(D = 4\), with maximally enhanced non-melonic interactions. The existence of the \(1 / N\) expansion is proved and we further characterize the dominant triangulations. This combinatorial analysis is then used to define a non-quartic, non-melonic class of models for which the large \(N\) free energy and the relevant expectations can be calculated explicitly. They are matched with random matrix models which contain multi-trace invariants in their potentials: they possess a branched polymer phase and a 2D quantum gravity phase, and a transition between them whose entropy exponent is positive. Finally, a non-perturbative analysis of the generic quartic model is performed, which proves analyticity in the coupling constants in cardioid domains.

MSC:

81T10 Model quantum field theories
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
82B30 Statistical thermodynamics
82D60 Statistical mechanics of polymers
83C45 Quantization of the gravitational field
05C05 Trees
05C80 Random graphs (graph-theoretic aspects)

References:

[1] Gromov, M., Metric Structures for Riemannian and Non-Riemannian Spaces (1999), Birkhäuser · Zbl 0953.53002
[2] Abraham, R.; Delmas, J.-F.; Hoscheit, P., A note on Gromov-Hausdorff-Prokhorov distance between (locally) compact measure spaces, Electron. J. Probab., 18, 14 (2013) · Zbl 1285.60004
[3] Aldous, D., The Annals of Probability, 21, 248-289 (1993) · Zbl 0791.60009
[4] Di Francesco, P.; Ginsparg, P. H.; Zinn-Justin, J., 2-D gravity and random matrices, Phys. Rep., 254, 1 (1995)
[5] Kazakov, V. A., Bilocal regularization of models of random surfaces, Phys. Lett. B, 150, 282 (1985)
[6] David, F., A model of random surfaces with nontrivial critical behavior, Nucl. Phys. B, 257, 543 (1985)
[7] ’t Hooft, G., A planar diagram theory for strong interactions, Nucl. Phys. B, 72, 461 (1974)
[8] Le Gall, J.-F., Uniqueness and universality of the Brownian map · Zbl 1282.60014
[9] Le Gall, J.-F.; Miermont, G., Scaling limits of random trees and planar maps · Zbl 1321.05240
[10] Ambjorn, J.; Durhuus, B.; Jonsson, T., Three-dimensional simplicial quantum gravity and generalized matrix models, Mod. Phys. Lett. A, 6, 1133 (1991) · Zbl 1020.83537
[11] Sasakura, N., Tensor model for gravity and orientability of manifold, Mod. Phys. Lett. A, 6, 2613 (1991) · Zbl 1020.83542
[12] Boulatov, D. V., A model of three-dimensional lattice gravity, Mod. Phys. Lett. A, 7, 1629 (1992) · Zbl 1020.83539
[13] Freidel, L., Group field theory: an overview, Int. J. Theor. Phys., 44, 1769 (2005) · Zbl 1100.83010
[14] Krajewski, T., Group field theories, PoS QGQGS, 2011, 005 (2011)
[15] Oriti, D., Group field theory as the 2nd quantization of Loop Quantum Gravity · Zbl 1223.83025
[16] Gurau, R., Colored group field theory, Commun. Math. Phys., 304, 69 (2011) · Zbl 1214.81170
[17] Gurau, R.; Ryan, J. P., Colored tensor models - a review, SIGMA, 8, 020 (2012) · Zbl 1242.05094
[18] Bonzom, V.; Gurau, R.; Rivasseau, V., Random tensor models in the large N limit: uncoloring the colored tensor models, Phys. Rev. D, 85, 084037 (2012)
[19] Gurau, R., The \(1 / N\) expansion of colored tensor models, Ann. Henri Poincaré, 12, 829 (2011) · Zbl 1218.81088
[20] Gurau, R.; Rivasseau, V., The \(1 / N\) expansion of colored tensor models in arbitrary dimension, Europhys. Lett., 95, 50004 (2011)
[21] Gurau, R., The complete \(1 / N\) expansion of colored tensor models in arbitrary dimension, Ann. Henri Poincaré, 13, 399 (2012) · Zbl 1245.81118
[22] Gurau, R., Lost in translation: topological singularities in group field theory, Class. Quantum Gravity, 27, 235023 (2010) · Zbl 1205.83022
[23] Ambjorn, J., Simplicial Euclidean and Lorentzian quantum gravity · Zbl 1045.83031
[24] Rivasseau, V., Quantum gravity and renormalization: the tensor track, AIP Conf. Proc., 1444, 18 (2011)
[25] Rivasseau, V., The tensor track: an update · Zbl 1298.83059
[26] Rivasseau, V., The tensor track, III · Zbl 1338.83085
[27] Bonzom, V.; Gurau, R.; Rivasseau, V., The Ising model on random lattices in arbitrary dimensions, Phys. Lett. B, 711, 88 (2012)
[28] Bonzom, V., Multicritical tensor models and hard dimers on spherical random lattices, Phys. Lett. A, 377, 501 (2013) · Zbl 1428.82024
[29] Bonzom, V.; Erbin, H., Coupling of hard dimers to dynamical lattices via random tensors, J. Stat. Mech., 1209, P09009 (2012) · Zbl 1456.82095
[30] Bonzom, V.; Combes, F., Tensor models from the viewpoint of matrix models I: loop models on random surfaces, AIHP-D, submitted for publication · Zbl 1310.05084
[31] Bonzom, V.; Gurau, R.; Smerlak, M., Universality in p-spin glasses with correlated disorder, J. Stat. Mech., L02003 (2013) · Zbl 1456.82906
[32] Bonzom, V.; Gurau, R.; Riello, A.; Rivasseau, V., Critical behavior of colored tensor models in the large \(N\) limit, Nucl. Phys. B, 853, 174 (2011) · Zbl 1229.81222
[33] Gurau, R.; Ryan, J. P., Melons are branched polymers, Ann. Henri Poincaré, 15, 11, 2085 (2014) · Zbl 1303.83012
[34] Kamiński, W.; Oriti, D.; Ryan, J. P., Towards a double-scaling limit for tensor models: probing sub-dominant orders, New J. Phys., 16, 063048 (2014) · Zbl 1451.81276
[35] Dartois, S.; Gurau, R.; Rivasseau, V., Double scaling in tensor models with a quartic interaction, J. High Energy Phys., 1309, 088 (2013) · Zbl 1342.83079
[36] Gurau, R.; Schaeffer, G., Regular colored graphs of positive degree · Zbl 1352.05090
[37] Bonzom, V.; Gurau, R.; Ryan, J. P.; Tanasa, A., The double scaling limit of random tensor models, J. High Energy Phys., 1409, 051 (2014) · Zbl 1333.60014
[38] Schaeffer, G., Conjugaison d’arbres et cartes combinatoires aléatoires (1998), PhD thesis
[39] Duplantier, B.; Miller, J.; Sheffield, S., Liouville quantum gravity as a mating of trees · Zbl 1503.60003
[40] Bonzom, V., New \(1 / N\) expansions in random tensor models, J. High Energy Phys., 1306, 062 (2013) · Zbl 1342.83053
[41] Gurau, R., Universality for random tensors · Zbl 1318.60010
[42] Das, S. R.; Dhar, A.; Sengupta, A. M.; Wadia, S. R., New critical behavior in \(d = 0\) large \(N\) matrix models, Mod. Phys. Lett. A, 5, 1041 (1990) · Zbl 1020.81740
[43] Alvarez-Gaume, L.; Barbon, J. L.F.; Crnkovic, C., A proposal for strings at \(D > 1\), Nucl. Phys. B, 394, 383 (1993)
[44] Korchemsky, G. P., Loops in the curvature matrix model, Phys. Lett. B, 296, 323 (1992)
[45] Klebanov, I. R.; Hashimoto, A., Nonperturbative solution of matrix models modified by trace squared terms, Nucl. Phys. B, 434, 264 (1995) · Zbl 1020.81751
[46] Barbon, J. L.F.; Demeterfi, K.; Klebanov, I. R.; Schmidhuber, C., Correlation functions in matrix models modified by wormhole terms, Nucl. Phys. B, 440, 189 (1995) · Zbl 0990.81703
[47] Delepouve, T.; Gurau, R.; Rivasseau, V., Universality and Borel summability of arbitrary quartic tensor models, Ann. Henri Poincaré, Probablités, submitted for publication · Zbl 1341.81045
[48] Gurau, R., The \(1 / N\) expansion of tensor models beyond perturbation theory · Zbl 1297.81126
[49] Gurau, R., The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders, Nucl. Phys. B, 865, 133 (2012) · Zbl 1262.81138
[50] Gurau, R., A generalization of the Virasoro algebra to arbitrary dimensions, Nucl. Phys. B, 852, 592 (2011) · Zbl 1229.81129
[51] Bonzom, V., Revisiting random tensor models at large \(N\) via the Schwinger-Dyson equations, J. High Energy Phys., 1303, 160 (2013) · Zbl 1342.81174
[52] Curien, N.; Kortchemski, I., Random stable looptrees · Zbl 1307.60061
[53] Rivasseau, V., Constructive matrix theory, J. High Energy Phys., 0709, 008 (2007)
[54] Magnen, J.; Rivasseau, V., Constructive \(\phi^4\) field theory without tears, Ann. Henri Poincaré, 9, 403-424 (2008) · Zbl 1141.81022
[55] Bonzom, V.; Combes, F., Tensor models from the viewpoint of matrix models II: the case of the Gaussian distribution, AHIP-D, submitted for publication · Zbl 1310.05084
[56] Rivasseau, V.; Wang, Z., Loop vertex expansion for Phi**2K theory in zero dimension, J. Math. Phys., 51, 092304 (2010) · Zbl 1309.81128
[57] Brydges, D.; Kennedy, T., Mayer expansions and the Hamilton-Jacobi equation, J. Stat. Phys., 48, 19 (1987)
[58] Abdesselam, A.; Rivasseau, V., Trees, forests and jungles: a botanical garden for cluster expansions, (Constructive Physics. Constructive Physics, Lecture Notes in Physics, vol. 446 (1994), Springer) · Zbl 0822.60095
[59] Collins, B., Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Int. Math. Res. Not., 17, 953 (2003) · Zbl 1049.60091
[60] Collins, B.; Sniady, P., Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Commun. Math. Phys., 264, 773 (2006) · Zbl 1108.60004
[61] Magnen, J.; Noui, K.; Rivasseau, V.; Smerlak, M., Scaling behaviour of three-dimensional group field theory, Class. Quantum Gravity, 26, 185012 (2009) · Zbl 1176.83066
[62] Rivasseau, V.; Wang, Z., Corrected loop vertex expansion for Phi42 theory
[63] Delepouve, T.; Rivasseau, V., Constructive tensor field theory: the \(T_3^4\) model
[64] Ben Geloun, J.; Rivasseau, V., A renormalizable 4-dimensional tensor field theory, Commun. Math. Phys., 318, 69 (2013) · Zbl 1261.83016
[65] Carrozza, S.; Oriti, D.; Rivasseau, V., Renormalization of tensorial group field theories: Abelian U(1) models in four dimensions · Zbl 1291.83102
[66] Samary, D. O.; Vignes-Tourneret, F., Just renormalizable TGFT’s on \(U(1)^d\) with gauge invariance · Zbl 1294.83031
[67] Carrozza, S.; Oriti, D.; Rivasseau, V., Renormalization of an SU(2) tensorial group field theory in three dimensions · Zbl 1300.83023
[68] Ben Geloun, J.; Samary, D. O., 3D tensor field theory: renormalization and one-loop \(β\)-functions, Ann. Henri Poincaré, 14, 1599 (2013) · Zbl 1272.83028
[69] Ben Geloun, J., Two and four-loop \(β\)-functions of rank 4 renormalizable tensor field theories, Class. Quantum Gravity, 29, 235011 (2012) · Zbl 1258.83033
[70] Ben Geloun, J., Asymptotic freedom of rank 4 tensor group field theory · Zbl 1298.83041
[71] Ben Geloun, J., Renormalizable models in rank \(d \geq 2\) tensorial group field theory · Zbl 1300.83043
[72] Ben Geloun, J.; Livine, E. R., Some classes of renormalizable tensor models, J. Math. Phys., 54, 082303 (2013) · Zbl 1287.83021
[73] Grosse, H.; Wulkenhaar, R., Renormalisation of phi**4 theory on noncommutative R**4 in the matrix base, Commun. Math. Phys., 256, 305 (2005) · Zbl 1075.82005
[74] Grosse, H.; Wulkenhaar, R., The \(β\)-function in duality-covariant noncommutative \(\phi^4\)-theory, Eur. Phys. J. C, 35, 277-282 (2004) · Zbl 1191.81207
[75] Disertori, M.; Rivasseau, V., Two and three loops beta function of non commutative \(\phi_4^4\) theory, Eur. Phys. J. C, 50, 661-671 (2007) · Zbl 1248.81254
[76] Disertori, M.; Gurau, R.; Magnen, J.; Rivasseau, V., Vanishing of beta function of non commutative \(\phi_4^4\) theory to all orders, Phys. Lett. B, 649, 95-102 (2007) · Zbl 1248.81253
[77] Grosse, H.; Wulkenhaar, R., Self-dual noncommutative \(\phi^4\)-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory, Commun. Math. Phys. (2015), submitted for publication · Zbl 1305.81129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.