×

Exceptional Calabi-Yau spaces: the geometry of \(\mathcal{N} = 2\) backgrounds with flux. (English) Zbl 1371.83176

Summary: In this paper we define the analogue of Calabi-Yau geometry for generic \(D = 4,\; \mathcal{N} = 2\) flux backgrounds in type II supergravity and M-theory. We show that solutions of the Killing spinor equations are in one-to-one correspondence with integrable, globally defined structures in \(E_{7(7)} \times \mathbb{R}^+\) generalised geometry. Such “exceptional Calabi-Yau” geometries are determined by two generalised objects that parametrise hyper- and vector-multiplet degrees of freedom and generalise conventional complex, symplectic and hyper-Kähler geometries. The integrability conditions for both hyper- and vector-multiplet structures are given by the vanishing of moment maps for the “generalised diffeomorphism group” of diffeomorphisms combined with gauge transformations. We give a number of explicit examples and discuss the structure of the moduli spaces of solutions. We then extend our construction to \(D = 5\; \text{and}\; D = 6\) flux backgrounds preserving eight supercharges, where similar structures appear, and finally discuss the analogous structures in \(\operatorname{O}(d,d) \times \mathbb{R}^+\) generalised geometry.

MSC:

83E50 Supergravity
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
32J81 Applications of compact analytic spaces to the sciences
57S05 Topological properties of groups of homeomorphisms or diffeomorphisms
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)

References:

[1] P.Candelas, G.Horowitz, A.Strominger, and E.Witten, “Vacuum configurations for superstrings”, Nucl. Phys.B258, 46-74 (1985).
[2] A.Strominger, “Yukawa couplings in superstring compactification”, Phys. Rev. Lett.55, 2547 (1985).
[3] A.Strominger and E.Witten, “New manifolds for superstring compactification”, Commun. Math. Phys.101, 341 (1985).
[4] P.Candelas and X.de la Ossa, “Moduli space of Calabi-Yau manifolds”, Nucl. Phys.B355, 455-481 (1991). · Zbl 0732.53056
[5] P.Candelas and D.Raine, “Spontaneous compactification and supersymmetry in \(d = 11\) supergravity”, Nucl. Phys.B248, 415 (1984).
[6] P.Candelas, “Compactification and supersymmetry of chiral \(N = 2, D = 10\) supergravity”, Nucl. Phys.B256, 385 (1985).
[7] J.Maldacena and C.Nunez, “Supergravity description of field theories on curved manifolds and a no go theorem”, Int. J. Mod. Phys.A16, 822-855 (2001), arXiv:hep‐th/0007018. · Zbl 0984.83052
[8] J.Gauntlett, D.Martelli, S.Pakis, and D.Waldram, “G structures and wrapped NS5‐branes”, Commun. Math. Phys.247, 421-445 (2004), arXiv:hep‐th/0205050. · Zbl 1061.81058
[9] J.Gauntlett, D.Martelli, and D.Waldram, “Superstrings with intrinsic torsion”, Phys. Rev.D69, 086002 (2004), arXiv:hep‐th/0302158.
[10] S.Ivanov and G.Papadopoulos, “A no‐go theorem for string warped compactifications”, Phys. Lett.B497, 309-316 (2001), arXiv:hep‐th/0008232. · Zbl 0971.83512
[11] C.Hull, “Generalised geometry for M‐theory”, JHEP07, 079 (2007), arXiv:hep‐th/0701203.
[12] P.Pacheco and D.Waldram, “M‐theory, exceptional generalised geometry and superpotentials”, JHEP09, 123 (2008), arXiv:0804.1362 [hep‐th]. · Zbl 1245.83070
[13] A.Coimbra, C.Strickland‐Constable, and D.Waldram, “E \({}_{d ( d )} \times \mathbb{R}^+\) generalised geometry, connections and M theory”, JHEP02, 054 (2014), arXiv:1112.3989 [hep‐th]. · Zbl 1333.83220
[14] A.Coimbra, C.Strickland‐Constable, and D.Waldram, “Supergravity as generalised geometry II: E \({}_{d ( d )} \times \mathbb{R}^+\) and M theory”, JHEP03, 019 (2014), arXiv:1212.1586 [hep‐th].
[15] A.Coimbra, C.Strickland‐Constable, and D.Waldram, “Supersymmetric backgrounds and generalised special holonomy”, arXiv:1411.5721 [hep‐th].
[16] J.Gauntlett, J.Gutowski, C.Hull, S.Pakis, and H.Reall, “All supersymmetric solutions of minimal supergravity in five dimensions”, Class. Quant. Grav.20, 4587-4634 (2003), arXiv:hep‐th/0209114. · Zbl 1045.83001
[17] J.Gauntlett and S.Pakis, “The geometry of \(D = 11\) Killing spinors”, JHEP04, 039 (2003), arXiv:hep‐th/0212008.
[18] N.Hitchin, “Generalized Calabi-Yau manifolds”, Quart. J. Math.54, 281-308 (2003), arXiv:math/0209099 [math‐dg]. · Zbl 1076.32019
[19] M.Gualtieri, “Generalized complex geometry”, arXiv:math/0401221 [math.DG].
[20] M.Grana, R.Minasian, M.Petrini, and A.Tomasiello, “Supersymmetric backgrounds from generalized Calabi-Yau manifolds”, JHEP08, 046 (2004), arXiv:hep‐th/0406137.
[21] M.Grana, R.Minasian, M.Petrini, and A.Tomasiello, “Generalized structures of \(N = 1\) vacua”, JHEP11, 020 (2005), arXiv:hep‐th/0505212.
[22] A.Tomasiello, “Reformulating supersymmetry with a generalized dolbeault operator”, JHEP02, 010 (2008), arXiv:0704.2613 [hep‐th].
[23] G.Cavalcanti and M.Gualtieri, “Generalized complex geometry and T‐duality”, arXiv:1106.1747 [math.DG].
[24] L.‐S.Tseng and S.‐T.Yau, “Generalized cohomologies and supersymmetry”, Commun. Math. Phys.326, 875-885 (2014), arXiv:1111.6968 [hep‐th]. · Zbl 1288.81125
[25] A.Kapustin, “Topological strings on noncommutative manifolds”, Int. J. Geom. Meth. Mod. Phys.1, 49-81 (2004), arXiv:hep‐th/0310057. · Zbl 1065.81108
[26] A.Kapustin and Y.Li, “Topological sigma‐models with H‐flux and twisted generalized complex manifolds”, Adv. Theor. Math. Phys.11(2), 269-290 (2007), arXiv:hep‐th/0407249. · Zbl 1192.81310
[27] V.Pestun and E.Witten, “The Hitchin functionals and the topological B‐model at one loop”, Lett. Math. Phys.74, 21-51 (2005), arXiv:hep‐th/0503083. · Zbl 1101.81098
[28] M.Grana, R.Minasian, M.Petrini, and A.Tomasiello, “A scan for new \(\mathcal{N} = 1\) vacua on twisted tori”, JHEP05, 031 (2007), arXiv:hep‐th/0609124.
[29] D.Lüst and D.Tsimpis, “Classes of AdS_4 type IIA/IIB compactifications with SU(3)× SU(3) structure”, JHEP04, 111 (2009), arXiv:0901.4474 [hep‐th].
[30] D.Andriot, “New supersymmetric flux vacua with intermediate SU(2) structure”, JHEP08, 096 (2008), arXiv:0804.1769 [hep‐th].
[31] R.Minasian, M.Petrini, and A.Zaffaroni, “Gravity duals to deformed SYM theories and generalized complex geometry”, JHEP12, 055 (2006), arXiv:hep‐th/0606257. · Zbl 1226.83087
[32] A.Butti, D.Forcella, L.Martucci, R.Minasian, M.Petrini, and A.Zaffaroni, “On the geometry and the moduli space of beta‐deformed quiver gauge theories”, JHEP07, 053 (2008), arXiv:0712.1215 [hep‐th].
[33] M.Gabella, J.Gauntlett, E.Palti, J.Sparks, and D.Waldram, “AdS_5 solutions of type IIB supergravity and generalized complex geometry”, Commun. Math. Phys.299, 365-408 (2010), arXiv:0906.4109 [hep‐th]. · Zbl 1197.83108
[34] B.de Wit and H.Nicolai, “\( d = 11\) supergravity with local SU(8) invariance”, Nucl. Phys.B274, 363 (1986).
[35] P.West, “Hidden superconformal symmetry in M theory”, JHEP08, 007 (2000), arXiv:hep‐th/0005270. · Zbl 0989.81101
[36] P.West, “E_11 and M theory”, Class. Quant. Grav.18, 4443-4460 (2001), arXiv:hep‐th/0104081. · Zbl 0992.83079
[37] P.West, “E_11, SL(32) and central charges”, Phys. Lett.B575, 333-342 (2003), arXiv:hep‐th/0307098. · Zbl 1031.22010
[38] K.Koepsell, H.Nicolai, and H.Samtleben, “An exceptional geometry for \(D = 11\) supergravity?”, Class. Quant. Grav.17, 3689-3702 (2000), arXiv:hep‐th/0006034. · Zbl 0971.83078
[39] T.Damour, M.Henneaux, and H.Nicolai, “E_10 and a ”small tension expansion’ of M theory”, Phys. Rev. Lett.89, 221601 (2002), arXiv:hep‐th/0207267. · Zbl 1267.83103
[40] T.Damour, M.Henneaux, and H.Nicolai, “Cosmological billiards”, Class. Quant. Grav.20, R145-R200 (2003), arXiv:hep‐th/0212256. · Zbl 1138.83306
[41] C.Hillmann, “Generalized E_(7(7)) coset dynamics and \(D = 11\) supergravity”, JHEP03, 135 (2009), arXiv:0901.1581 [hep‐th].
[42] D.Berman and M.Perry, “Generalized geometry and M theory”, JHEP06, 074 (2011), arXiv:1008.1763 [hep‐th]. · Zbl 1298.81244
[43] D.Berman, H.Godazgar, and M.Perry, “SO(5,5) duality in M‐theory and generalized geometry”, Phys. Lett.B700, 65-67 (2011), arXiv:1103.5733 [hep‐th].
[44] D.Berman, H.Godazgar, M.Perry, and P.West, “Duality invariant actions and generalised geometry”, JHEP02, 108 (2012), arXiv:1111.0459 [hep‐th]. · Zbl 1309.81201
[45] G.Aldazabal, M.Grana, D.Marqués, and J. A.Rosabal, “Extended geometry and gauged maximal supergravity”, JHEP06, 046 (2013), arXiv:1302.5419 [hep‐th]. · Zbl 1342.83439
[46] O.Hohm and H.Samtleben, “Exceptional form of \(D = 11\) supergravity”, Phys. Rev. Lett.111, 231601 (2013), arXiv:1308.1673 [hep‐th].
[47] D.Berman, M.Cederwall, and M.Perry, “Global aspects of double geometry”, JHEP09, 066 (2014), arXiv:1401.1311 [hep‐th]. · Zbl 1333.81286
[48] M.Cederwall, “The geometry behind double geometry”, JHEP09, 070 (2014), arXiv:1402.2513 [hep‐th]. · Zbl 1333.81287
[49] C.Hull, “Finite gauge transformations and geometry in double field theory”, JHEP04, 109 (2015), arXiv:1406.7794 [hep‐th]. · Zbl 1388.81723
[50] K.Lee, C.Strickland‐Constable, and D.Waldram, “New gaugings and non‐geometry”, arXiv:1506.03457 [hep‐th].
[51] M.Grana, J.Louis, A.Sim, and D.Waldram, “E_7(7) formulation of \(\mathcal{N} = 2\) backgrounds”, JHEP07, 104 (2009), arXiv:0904.2333 [hep‐th].
[52] M.Grana and F.Orsi, “\( \mathcal{N} = 1\) vacua in exceptional generalized geometry”, JHEP08, 109 (2011), arXiv:1105.4855 [hep‐th]. · Zbl 1298.81288
[53] M.Grana and F.Orsi, “\( \mathcal{N} = 2\) vacua in generalized geometry”, JHEP11, 052 (2012), arXiv:1207.3004 [hep‐th]. · Zbl 1397.81245
[54] M.Grana and H.Triendl, “Generalized \(N = 1\) and \(N = 2\) structures in M‐theory and type II orientifolds”, JHEP03, 145 (2013), arXiv:1211.3867 [hep‐th]. · Zbl 1342.81429
[55] F.Kirwan, “Momentum maps and reduction in algebraic geometry”, Differ. Geom. Appl.9(1‐2), 135-171 (1998). · Zbl 0955.37031
[56] R.Thomas, “Notes on GIT and symplectic reduction for bundles and varieties”, arXiv:math/0512411 [math.DG].
[57] M.Atiyah and R.Bott, “The Yang-Mills equations over Riemann surfaces”, Phil. Trans. R. Soc. A308(1505), 523-615 (1983). · Zbl 0509.14014
[58] S.Donaldson, “Anti self‐dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles”, Proc. Lond. Math. Soc.50(1), 1-26 (1985). · Zbl 0529.53018
[59] K.Uhlenbeck and S.‐T.Yau, “On the existence of Hermitian‐Yang-Mills connections in stable vector bundles”, Comm. Pure Appl. Math.39(S1), 257-293 (1986). · Zbl 0615.58045
[60] K.Uhlenbeck and S.‐T.Yau, “A note on our previous paper: On the existence of Hermitian Yang-Mills connections in stable vector bundles”, Comm. Pure Appl. Math.42(5), 703-707 (1989). · Zbl 0678.58041
[61] N.Hitchin, “The self‐duality equations on a Riemann surface”, Proc. Lond. Math. Soc.55, 59-131 (1987). · Zbl 0634.53045
[62] A.Fujiki, “Moduli space of polarized algebraic manifolds and Kähler metrics”, Sugaku Expositions5(2), 173-191 (1992). Sugaku Expositions. · Zbl 0796.32009
[63] S.Donaldson, Remarks on gauge theory, complex geometry and 4‐manifold topology, vol. 5 of World Sci. Ser. 20th Century Math., ch. 42, pp. 384-403 (World Sci. Publ., River Edge, NJ, 1997).
[64] A.Coimbra and C.Strickland‐Constable, “Generalised structures for \(\mathcal{N} = 1\) AdS backgrounds”, arXiv:1504.02465 [hep‐th].
[65] M.Grana, J.Louis, and D.Waldram, “Hitchin functionals in \(\mathcal{N} = 2\) supergravity”, JHEP01, 008 (2006), arXiv:hep‐th/0505264.
[66] M.Grana, J.Louis, and D.Waldram, “SU(3)× SU(3) compactification and mirror duals of magnetic fluxes”, JHEP04, 101 (2007), arXiv:hep‐th/0612237.
[67] L.Andrianopoli, M.Bertolini, A.Ceresole, R.D’Auria, S.Ferrara, P.Fré, and T.Magri, “\( N = 2\) supergravity and \(N = 2\) super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map”, J. Geom. Phys.23, 111-189 (1997), arXiv:hep‐th/9605032. · Zbl 0899.53073
[68] P.Koerber and L.Martucci, “From ten to four and back again: How to generalize the geometry”, JHEP08, 059 (2007), arXiv:0707.1038 [hep‐th]. · Zbl 1326.81162
[69] K.Hristov, H.Looyestijn, and S.Vandoren, “Maximally supersymmetric solutions of \(D = 4 \mathcal{N} = 2\) gauged supergravity”, JHEP11, 115 (2009), arXiv:0909.1743 [hep‐th].
[70] J.Louis, P.Smyth, and H.Triendl, “Supersymmetric vacua in \(\mathcal{N} = 2\) supergravity”, JHEP08, 039 (2012), arXiv:1204.3893 [hep‐th].
[71] S.deAlwis, J.Louis, L.McAllister, H.Triendl, and A.Westphal, “Moduli spaces in AdS_4 supergravity”, JHEP05, 102 (2014), arXiv:1312.5659 [hep‐th]. · Zbl 1333.83228
[72] A.Ashmore, M.Petrini, and D.Waldram, “The exceptional generalised geometry of supersymmetric AdS flux backgrounds”, arXiv:1602.02158 [hep‐th].
[73] E.Bergshoeff, R.Kallosh, T.Ortín, D.Roest, and A.VanProeyen; “New formulations of D = 10 supersymmetry and D8‐O8 domain walls”, Class. Quant. Grav.18, 3359-3382 (2001), arXiv:hep‐th/0103233. · Zbl 1004.83053
[74] P.Kaste, R.Minasian, and A.Tomasiello, “Supersymmetric M‐theory compactifications with fluxes on seven‐manifolds and G‐structures”, JHEP07, 004 (2003), arXiv:hep‐th/0303127.
[75] K.Behrndt and C.Jeschek, “Fluxes in M‐theory on seven‐manifolds and G structures”, JHEP04, 002 (2003), arXiv:hep‐th/0302047.
[76] G.Dall’Agata and N.Prezas, “\( \mathcal{N} = 1\) geometries for M theory and type IIA strings with fluxes”, Phys. Rev.D69, 066004 (2004), arXiv:hep‐th/0311146.
[77] A.Lukas and P.Saffin, “M‐theory compactification, fluxes and AdS_4”, Phys. Rev.D71, 046005 (2005), arXiv:hep‐th/0403235.
[78] F.Witt, “Generalised G_2‐manifolds”, Commun. Math. Phys.265, 275-303 (2006), arXiv:math/0411642 [math‐dg]. · Zbl 1154.53014
[79] M.Grana, R.Minasian, M.Petrini, and D.Waldram, “T‐duality, generalized geometry and non‐geometric backgrounds”, JHEP04, 075 (2008), arXiv:0807.4527 [hep‐th].
[80] R.Gilmore, Lie groups, physics, and geometry (Cambridge University Press, 2008). · Zbl 1157.00009
[81] K.Lee, C.Strickland‐Constable, and D.Waldram, “Spheres, generalised parallelisability and consistent truncations”, arXiv:1401.3360 [hep‐th].
[82] D.Baraglia, “Leibniz algebroids, twistings and exceptional generalized geometry”, J. Geom. Phys.62, 903-934 (2012), arXiv:1101.0856 [math.DG]. · Zbl 1253.53081
[83] J.Wolf, “Complex homogeneous contact manifolds and quaternionic symmetric spaces”, J. Math. Mech.14(6), 1033-1047 (1965). · Zbl 0141.38202
[84] D.Alekseevsky, “Compact quaternion spaces”, Funct. Anal. Appl.2(2), 106-114 (1968).
[85] D.Alekseevsky and V.Cortés, “Classification of pseudo‐Riemannian symmetric spaces of quaternionic Kähler type”, Amer. Math. Soc. Transl. Ser. 2213(2), 33-62 (2005). · Zbl 1077.53040
[86] A.Swann, “HyperKähler and quaternionic Kähler geometry”, Math. Ann.289(1), 421-450 (1991). · Zbl 0711.53051
[87] P.Kobak and A.Swann, “The HyperKähler geometry associated to Wolf spaces”, B. Unione Mat. Ital.4‐B(3), 587-595 (2001), arXiv:math/0001025 [math.DG]. · Zbl 1182.53041
[88] B.DeWitt, “Quantum theory of gravity I. The canonical theory”, Phys. Rev.160, 1113-1148 (1967). · Zbl 0158.46504
[89] D.Ebin, “On the space of Riemannian metrics”, Bull. Amer. Math. Soc.74(5), 1001-1003 (1968). · Zbl 0172.22905
[90] O.Gil‐Medrano and P.Michor, “The Riemannian manifold of all Riemannian metrics”, Quart. J. Math.42, 183-202 (1991), arXiv:math/9201259 [math.DG]. · Zbl 0739.58010
[91] B.de Wit, B.Kleijn, and S.Vandoren, “Superconformal hypermultiplets”, Nucl. Phys.B568, 475-502 (2000), arXiv:hep‐th/9909228. · Zbl 0951.81042
[92] B.deWit, M.Roček, and S.Vandoren, “Hypermultiplets, hyper‐Kähler cones and quaternion‐Kähler geometry”, JHEP02, 039 (2001), arXiv:hep‐th/0101161.
[93] B.de Wit, M.Roček, and S.Vandoren, “Gauging isometries on hyperkähler cones and quaternion‐Kähler manifolds”, Phys. Lett.B511, 302-310 (2001), arXiv:hep‐th/0104215. · Zbl 0969.83505
[94] S.Ferrara and M.Gunaydin, “Orbits of exceptional groups, duality and BPS states in string theory”, Int. J. Mod. Phys.A13, 2075-2088 (1998), arXiv:hep‐th/9708025 [hep‐th]. · Zbl 0936.81032
[95] B.Craps, F.Roose, W.Troost, and A.VanProeyen, “What is special Kähler geometry?”, Nucl. Phys.B503, 565-613 (1997), arXiv:hep‐th/9703082. · Zbl 0951.81088
[96] D.Freed, “Special Kähler manifolds”, Commun. Math. Phys.203, 31-52 (1999), arXiv:hep‐th/9712042. · Zbl 0940.53040
[97] S.Cecotti, S.Ferrara, and L.Girardello, “Geometry of type II superstrings and the moduli of superconformal field theories”, Int. J. Mod. Phys.A4, 2475 (1989). · Zbl 0681.58044
[98] S.Cecotti, “Homogeneous Kähler manifolds and T algebras in \(N = 2\) supergravity and superstrings”, Commun. Math. Phys.124, 23-55 (1989). · Zbl 0685.53040
[99] N.Hitchin, “The geometry of three‐forms in six dimensions”, J. Diff. Geom.55, 547-576 (2000). · Zbl 1036.53042
[100] M.Sato and T.Kimura, “A classification of irreducible prehomogeneous vector spaces and their relative invariants”, Nagoya Math. J.65, 1-155 (1977). · Zbl 0321.14030
[101] S.Chiossi and S.Salamon, “The intrinsic torsion of SU(3) and G_2 structures”, in Differential geometry, Valencia 2001 (World Sci. Publishing, 2002). arXiv:math/0202282 [math.DG]. · Zbl 1024.53018
[102] K.Behrndt, M.Cvetič, and T.Liu, “Classification of supersymmetric flux vacua in M‐theory”, Nucl. Phys.B749, 25-68 (2006), arXiv:hep‐th/0512032. · Zbl 1214.81189
[103] M.Grana and J.Polchinski, “Supersymmetric three‐form flux perturbations on AdS_5”, Phys. Rev.D63, 026001 (2001), arXiv:hep‐th/0009211.
[104] S.Gubser, “Supersymmetry and F theory realization of the deformed conifold with three form flux”, arXiv:hep‐th/0010010.
[105] M.Grana and J.Polchinski, “Gauge‐gravity duals with a holomorphic dilaton”, Phys. Rev.D65, 126005 (2002), arXiv:hep‐th/0106014.
[106] M.Bertolini, V.Campos, G.Ferretti, P.Fré, P.Salomonson, and M.Trigiante, “Supersymmetric 3‐branes on smooth ALE manifolds with flux”, Nucl. Phys.B617, 3-42 (2001), arXiv:hep‐th/0106186. · Zbl 0974.83049
[107] A.Coimbra, R.Minasian, H.Triendl, and D.Waldram, “Generalised geometry for string corrections”, JHEP11, 160 (2014), arXiv:1407.7542 [hep‐th]. · Zbl 1333.83179
[108] B.deWit, H.Samtleben, and M.Trigiante, “Magnetic charges in local field theory”, JHEP09, 016 (2005), arXiv:hep‐th/0507289.
[109] B.deWit and M.VanZalk; “Electric and magnetic charges in \(N = 2\) conformal supergravity theories”, JHEP10, 050 (2011), arXiv:1107.3305 [hep‐th]. · Zbl 1303.81113
[110] A.Dancer and A.Swann, “The structure of quaternionic Kähler quotients”, in Geometry and Physics, vol. 184 of Lecture Notes in Pure and Appl. Math., pp. 313-320, (Dekker, New York, 1997). · Zbl 0869.53042
[111] R.Sjamaar and E.Lerman, “Stratified symplectic spaces and reduction”, Ann. of Math.134(2), 365-422 (1991). · Zbl 0759.58019
[112] P.Koerber and D.Tsimpis, “Supersymmetric sources, integrability and generalized‐structure compactifications”, JHEP08, 082 (2007), arXiv:0706.1244 [hep‐th]. · Zbl 1326.81207
[113] B.deWit and A.VanProeyen; “Special geometry, cubic polynomials and homogeneous quaternionic spaces”, Commun. Math. Phys.149, 307-334 (1992), arXiv:hep‐th/9112027. · Zbl 0824.53043
[114] B.de Wit and A.VanProeyen, “Special geometry and symplectic transformations”, Nucl. Phys. Proc. Suppl.45BC, 196-206 (1996), arXiv:hep‐th/9510186. · Zbl 0991.53506
[115] M.Günaydin, G.Sierra, and P.Townsend, “The geometry of N = 2 Maxwell‐Einstein supergravity and Jordan algebras”, Nucl. Phys.B242, 244-268 (1984).
[116] E.Bergshoeff, S.Cucu, T.deWit, J.Gheerardyn, S.Vandoren, and A.VanProeyen; “N = 2 supergravity in five dimensions revisited”, Class. Quant. Grav.21, 3015-3042 (2004), arXiv:hep‐th/0403045. · Zbl 1061.83061
[117] D.Alekseevsky and V.Cortés; “Geometric construction of the r‐map: from affine special real to special Kähler manifolds”, Commun. Math. Phys.291, 579-590 (2009), arXiv:0811.1658 [math.DG]. · Zbl 1205.53024
[118] K.Behrndt and S.Gukov, “Domain walls and superpotentials from M theory on Calabi-Yau three‐folds”, Nucl. Phys.B580, 225-242 (2000), arXiv:hep‐th/0001082. · Zbl 1071.81559
[119] J.Gauntlett, D.Martelli, J.Sparks, and D.Waldram, “Supersymmetric AdS_5 solutions of M‐theory”, Class. Quant. Grav.21, 4335-4366 (2004), arXiv:hep‐th/0402153. · Zbl 1059.83038
[120] L.Romans, “Self‐duality for interacting fields: covariant field equations for six‐dimensional chiral supergravities”, Nucl. Phys.B276, 71 (1986).
[121] M.Gunaydin, H.Samtleben, and E.Sezgin, “On the magical supergravities in six dimensions”, Nucl. Phys.B848, 62-89 (2011), arXiv:1012.1818 [hep‐th]. · Zbl 1215.83054
[122] C.Callan, J.Harvey, and A.Strominger, “Supersymmetric string solitons”, in String theory and quantum gravity (World Sci. Publ., River Edge, NJ, 1992). arXiv:hep‐th/9112030.
[123] A.Strominger, “Superstrings with torsion”, Nucl. Phys.B274, 253 (1986).
[124] A.Coimbra, C.Strickland‐Constable, and D.Waldram, “Supergravity as generalised geometry I: Type II theories”, JHEP11, 091 (2011), arXiv:1107.1733 [hep‐th]. · Zbl 1306.81205
[125] W.Siegel, “Manifest duality in low‐energy superstrings”, arXiv:hep‐th/9308133.
[126] O.Hohm and S. K.Kwak, “Frame‐like geometry of double field theory”, J. Phys.A44, 085404 (2011), arXiv:1011.4101 [hep‐th]. · Zbl 1209.81168
[127] M.Gualtieri, “Branes on Poisson varieties”, in The many facets of geometry, pp. 368-394, (Oxford Univ. Press, Oxford, 2010). arXiv:0710.2719 [math.DG]. · Zbl 1239.53104
[128] I.Jeon, K.Lee, and J.‐H.Park, “Differential geometry with a projection: application to double field theory”, JHEP04, 014 (2011), arXiv:1011.1324 [hep‐th]. · Zbl 1250.81085
[129] I.Jeon, K.Lee, and J.‐H.Park, “Stringy differential geometry, beyond Riemann”, Phys. Rev.D84, 044022 (2011), arXiv:1105.6294 [hep‐th].
[130] C.Strickland‐Constable, “Subsectors, Dynkin diagrams and new generalised geometries”, arXiv:1310.4196 [hep‐th].
[131] D.Berman, M.Cederwall, A.Kleinschmidt, and D.Thompson, “The gauge structure of generalised diffeomorphisms”, JHEP01, 064 (2013), arXiv:1208.5884 [hep‐th].
[132] O.Hohm and H.Samtleben, “Exceptional field theory. III. E_8(8)”, Phys. Rev.D90, 066002 (2014), arXiv:1406.3348 [hep‐th].
[133] J.Rosabal, “On the exceptional generalised Lie derivative for \(d \geq 7\)”, arXiv:1410.8148 [hep‐th].
[134] M.Cederwall and J.Rosabal, “E_8 geometry”, JHEP07, 007 (2015), arXiv:1504.04843 [hep‐th].
[135] N.Hitchin, “Stable forms and special metrics”, arXiv:math/0107101 [math.DG].
[136] N.Hitchin, “Brackets, forms and invariant functionals”, arXiv:math/0508618 [math.DG].
[137] N.Hitchin, “The geometry of three‐forms in six and seven dimensions”, arXiv:math/0010054 [math.DG].
[138] R.Rubio, “B_n‐generalized geometry and \(G_2^2\)‐structures”, J. Geom. Phys.73, 150-156 (2013), arXiv:1301.3330 [math.DG]. · Zbl 1284.53077
[139] R.Rubio, Generalized geometry of type \(B_n\). PhD thesis, University of Oxford, 2014.
[140] M.Manetti, “Lectures on deformations of complex manifolds (deformations from differential graded viewpoint)”, Rend. Mat. Appl. (7)24(1), 1-183 (2004). · Zbl 1066.58010
[141] M.Gualtieri, “Generalized geometry and the Hodge decomposition”, arXiv:math/0409093 [math.DG].
[142] G.Cavalcanti, “Formality in generalized Kähler geometry”, Topol. Appl.154(6), 1119-1125 (2007), arXiv:math/0603596 [math.DG]. · Zbl 1123.53014
[143] A.Ashmore, M.Gabella, M.Grana, M.Petrini, and D.Waldram, “Exactly marginal deformations from exceptional generalised geometry”, arXiv:1605.05730 [hep‐th].
[144] H.Bursztyn, G.Cavalcanti, and M.Gualtieri, “Reduction of Courant algebroids and generalized complex structures”, Adv. Math.211(2), 726-765 (2006), arXiv:math/0509640. · Zbl 1115.53056
[145] R.Dijkgraaf, S.Gukov, A.Neitzke, and C.Vafa, “Topological M‐theory as unification of form theories of gravity”, Adv. Theor. Math. Phys.9(4), 603-665 (2005), arXiv:hep‐th/0411073. · Zbl 1129.81066
[146] N.Nekrasov, “À la recherche de la M‐théorie perdue Z theory: chasing M/F theory”, arXiv:hep‐th/0412021.
[147] A.Fayyazuddin, T.Husain, and I.Pappa, “Geometry of wrapped M5‐branes in Calabi-Yau 2‐folds”, Phys. Rev.D73, 126004 (2006), arXiv:hep‐th/0509018.
[148] A.Fayyazuddin and D.Smith, “Localized intersections of M5‐branes and four‐dimensional superconformal field theories”, JHEP04, 030 (1999), arXiv:hep‐th/9902210. · Zbl 0956.83056
[149] K.Sakamoto, “On the topology of quaternion Kähler manifolds”, Tohoku Math. J. (2)26(3), 389-405 (1974). · Zbl 0297.53015
[150] M.Konishi, “On manifolds with Sasakian 3‐structure over quaternion Kaehler manifolds”, Kodai Math. Sem. Rep.26(2‐3), 194-200 (1975). · Zbl 0308.53035
[151] D.Grandini, “Quaternionic Kähler reductions of Wolf spaces”, Ann. Global Anal. Geom.32(3), 225-252 (2007), arXiv:math/0608365 [math.DG]. · Zbl 1133.53038
[152] N.Hitchin, “The moduli space of complex Lagrangian submanifolds”, Asian J. Math3, 77-91 (1999), arXiv:math/9901069 [math.DG]. · Zbl 0958.53057
[153] N.Hitchin, A.Karlhede, U.Lindström, and M.Roček, “Hyperkähler metrics and supersymmetry”, Commun. Math. Phys.108, 535 (1987). · Zbl 0612.53043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.