×

Hamilton’s quaternions. (English) Zbl 1076.16015

Hazewinkel, M. (ed.), Handbook of algebra. Volume 3. Amsterdam: Elsevier (ISBN 0-444-51264-0/hbk). 429-454 (2003).
The paper under review is a survey, addressed to a wide audience of mathematicians and physicists, on the study of Hamiltonian quaternions, namely, the associative division algebra \(\mathbb{H}\) over the field \(\mathbb{R}\) of real numbers, with a basis \(1,i,j,k\), and multiplication defined by the relations \(i^2=j^2=k^2=ijk=-1\). This earliest noncommutative number system was introduced by Sir W. Hamilton in October 1843.
The survey is presented in seven sections, in which the author introduces the reader both to the historical and the mathematical aspects of the research in this area. He sheds light on the role of Euler and Gauss as predecessors of Hamilton’s discovery, and recalls that Hamilton had great expectations for its wide applicability to mathematics, physics and astronomy. At the same time, it is pointed out that this opinion had a number of opponents, and similarly to the case of non-Euclidean geometry, the controversy over the usefulness of quaternions lasted for many years after Hamilton’s death.
The author presents the classical matrix realization (the Cayley model) of \(\mathbb{H}\), as well as some basic facts concerning the structure of the multiplicative group \(\mathbb{H}^*\) of \(\mathbb{H}\) (like Moivre’s formula), and gives an idea of the present place of quaternions in some areas of topology and theoretical physics. The paper contains information on several major mathematical achievements related to Hamilton’s discovery, such as the Cayley (division) \(\mathbb{R}\)-algebra of octaves, the Frobenius classification of finite-dimensional associative division \(\mathbb{R}\)-algebras, the Gel’fand-Mazur theorem for commutative Banach division algebras, Hopf’s theorem on commutative (but not necessarily associative) finite-dimensional division \(\mathbb{R}\)-algebras, the development of vector analysis, the Hurwitz-Radon theorem on compositions of sums of squares (and its applications to topology), and the fundamental theorem of algebra for quaternions due to Eilenberg and Niven. Also, it clarifies the role of quaternions in understanding and representing rotations in low-dimensional Euclidean spaces (for example, the normal structure of the special orthogonal groups \(\text{SO}(n)\): \(n\in\mathbb{N}\)), and reproduces Coxeter’s description of finite subgroups of \(\mathbb{H}^*\).
For the entire collection see [Zbl 1052.00009].

MSC:

16K20 Finite-dimensional division rings
17A35 Nonassociative division algebras
15A63 Quadratic and bilinear forms, inner products
16-03 History of associative rings and algebras
01-02 Research exposition (monographs, survey articles) pertaining to history and biography
20H15 Other geometric groups, including crystallographic groups
01A55 History of mathematics in the 19th century

References:

[1] Adams, J. F.: Vector fields on spheres. Ann. of math. 72, 603-632 (1962) · Zbl 0112.38102
[2] Adler, S. L.: Quaternion quantum mechanics and quantum fields. (1995) · Zbl 0885.00019
[3] Altmann, S. L.: Rotations, quaternions, and double groups. (1986) · Zbl 0683.20037
[4] Altmann, S. L.: Hamilton, rodrigues, and the quaternion scandal. Math. mag. 62, 291-308 (1989) · Zbl 0704.01009
[5] Amitsur, S. A.: Finite subgroups of division rings. Trans. amer. Math. soc. 80, 361-386 (1955) · Zbl 0065.25603
[6] Anderson, R.; Joshi, G. C.: Quaternions and the heuristic role of mathematical structures in physics. Phys. essays 6, 308-319 (1993)
[7] Aslaksen, H.: Quaternionic determinants. Math. intelligencer 18, 57-65 (1996) · Zbl 0881.15007
[8] Baez, J. C.: The octonions. Bull. amer. Math. soc. (N.S.) 39, 145-205 (2002) · Zbl 1026.17001
[9] Van Der Blij, F.: History of the octaves. Simon stevin 34, 106-125 (1961) · Zbl 0145.26205
[10] Brown, R.: Frobenius groups and classical maximal orders. Mem. amer. Math. soc, no. 717 (2000)
[11] . Collected works 2, 96-475 (1858) · ERAM 055.1446cj
[12] Coxeter, H. S. M.: The binary polyhedral groups, and other generalizations of the quaternion groups. Duke math. J. 7, 367-379 (1940) · Zbl 0024.15002
[13] Crowe, M. J.: A history of vector analysis. (1985) · Zbl 0633.01001
[14] Dieudonné, J.: Linear algebra and geometry. (1969) · Zbl 0185.48803
[15] Eilenberg, S.; Niven, I.: The ”fundamental theorem of algebra” for quaternions. Bull. amer. Math.soc. 50, 246-248 (1944) · Zbl 0063.01228
[16] Frobenius, F. G.: Über lineare substitutionen und bilineare formen. Ges. abhandl. 1, 343-405 (1968)
[17] Gauss, C. F.: Mutation des raumes. 357-361 (1900)
[18] Hamilton, W. R.: Lectures on quaternions. (1853) · ERAM 045.1239cj
[19] Chelsea; Hamilton, W. R.: Elements of quaternions. (1969)
[20] Hankins, T. L.: Sir william rowan Hamilton. (1980) · Zbl 0553.01015
[21] D., Happel: Klassifikationstheorie endlich-dimensionaler algebren in der zeit von 1880 bis 1920. L’enseig. math. 26, 91-102 (1980) · Zbl 0439.01008
[22] Hirzebruch, F.: Division algebras and topology. Readings in math., 281-302 (1991)
[23] Hurwitz, A.: Über die komposition der quadratischen formen von beliebig vielen variablen. Math. werke 2, 565-571 (1933)
[24] Kline, M.: Mathematical thought from ancient to modern times. (1972) · Zbl 0277.01001
[25] Koecher, M.; Remmert, R.: Hamilton’s quaternions. Graduate texts in math. 123, 189-220 (1991)
[26] Koecher, M.; Remmert, R.: The isomorphism theorems of Frobenius, Hopf and Gelfand-Mazur. Graduate texts in math. 123, 221-247 (1991)
[27] Kuipers, J.: Quaternions and rotation sequences. (1999) · Zbl 1053.70001
[28] Lam, T. Y.: The algebraic theory of quadratic forms. (1980) · Zbl 0437.10006
[29] Lam, T. Y.: A first course in noncommutative rings. Graduate texts in math. 131 (2001) · Zbl 0980.16001
[30] May, K. O.: The impossibility of a division algebra of vectors in three-dimensional space. Amer. math. Monthly 73, 289-291 (1966)
[31] Messiah, A.: Quantum mechanics. 2 (1965) · Zbl 0102.42602
[32] Peirce, B.: Linear associative algebras. Amer. J. Math. 4, 97-229 (1881) · JFM 13.0082.03
[33] Pickert, G.; Steiner, H. -G.: Komplexe zahlen und quaternionen. Grundzüge der Mathematik 1 (1962)
[34] Shapiro, D.: Compositions of quadratic forms. De gruyter expos. In math. 33 (2000) · Zbl 0954.11011
[35] Vandyck, M. A.: Quaternions in physics, victorian curiosities or enlightening language? new insights 150 years after Hamilton’s discovery. Rev. questions sci. 172, 293-307 (2002) · Zbl 1002.15030
[36] Vigneras, M. -F.: Arithmètique des algebrès de quaternions. Lecture notes in math. 800 (1980)
[37] Van Der Waerden, B. L.: Hamiltons entdeckung der quaternionen. (1973) · Zbl 0313.01005
[38] Van Der Waerden, B. L.: Hamilton’s discovery of quaternions. Math. magazine 49, 227-234 (1976) · Zbl 0348.01007
[39] Ward, J. P.: Quaternions and Cayley numbers. Mathematics and its applications 403 (1997) · Zbl 0877.15031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.