×

A modified generalized Laguerre-Gauss collocation method for fractional neutral functional-differential equations on the half-line. (English) Zbl 1474.65249

Summary: The modified generalized Laguerre-Gauss collocation (MGLC) method is applied to obtain an approximate solution of fractional neutral functional-differential equations with proportional delays on the half-line. The proposed technique is based on modified generalized Laguerre polynomials and Gauss quadrature integration of such polynomials. The main advantage of the present method is to reduce the solution of fractional neutral functional-differential equations into a system of algebraic equations. Reasonable numerical results are achieved by choosing few modified generalized Laguerre-Gauss collocation points. Numerical results demonstrate the accuracy, efficiency, and versatility of the proposed method on the half-line.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
34K37 Functional-differential equations with fractional derivatives

References:

[1] Samko, S.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives-Theory and Applications (1993), Linghorne, Pa, USA: Gordon and Breach, Linghorne, Pa, USA · Zbl 0818.26003
[2] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus. Fractional Calculus, Series on Complexity, Nonlinearity and Chaos, 3 (2012), World Scientific · Zbl 1248.26011 · doi:10.1142/9789814355216
[3] Anwar, A. M. O.; Jarad, F.; Baleanu, D.; Ayaz, F., Fractional Caputo heat equation within the double Laplace transform, Romanian Journal of Physics, 58, 1-2, 15-22 (2013)
[4] Bhrawy, A. H.; Alghamdi, M., A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals, Boundary Value Problems, 2012, article 62 (2012) · Zbl 1280.65079
[5] Kadem, A.; Baleanu, D., On fractional coupled Whitham-Broer-Kaup equations, Romanian Journal of Physics, 56, 5-6, 629-635 (2011) · Zbl 1231.35203
[6] Ortigueira, M., Introduction to fraction linear systems—part 1: continuous-time case, IEE Proceedings Vision, Image, Signal Processing, 147, 6-70 (2000)
[7] Wei, M.-B.; Zeng, D.-Q., Fractional perturbation technique of fractional differentiable functions, Romanian Journal of Physics, 57, 9-10, 1278-1284 (2012)
[8] Sadati, S. J.; Ghaderi, R.; Ranjbar, A., Some fractional comparison results and stabliity theorem for time delay systems, Romanian Reports in Physics, 65, 94-102 (2013)
[9] Gao, F.; Lee, X.; Tong, H.; Fei, F.; Zhao, H., Identification of unknown parameters and orders via cuckoo search oriented statistically by differential evolution for noncommensu- rate fractional-order chaotic systems, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.93306 · doi:10.1155/2013/382834
[10] Gao, F.; Lee, X.; Fei, F.; Tong, H.; Deng, Y.; Zhao, H., Identification time-delayed fractional order chaos with functional extrema model via differential evolution, Expert Systems with Applications, 41, 1601-1608 (2014)
[11] Bhrawy, A. H.; Baleanu, D.; Assas, L. M., Efficient generalized Laguerre-spectral methods for solving multi-term fractional differential equations on the half line, Journal of Vibration and Control, 20, 7, 973-985 (2014) · Zbl 1348.65060 · doi:10.1177/1077546313482959
[12] Baleanu, D.; Bhrawy, A. H.; Taha, T. M., Two efficient generalized Laguerre spectral algorithms for fractional initial value problems, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.65240 · doi:10.1155/2013/546502
[13] Deng, J.; Deng, Z., Existence of solutions of initial value problems for non-linear fractional differential equations, Applied Mathematics Letters, 32, 6-12 (2014) · Zbl 1315.34011
[14] Zhao, Y.; Cheng, D.-F.; Yang, X.-J., Approximation solutions for local fractional Schrödinger equation in the one-dimensional Cantorian system, Advances in Mathematical Physics, 2013 (2013) · Zbl 1292.81050
[15] Heydari, M. H.; Hooshmandasl, M. R.; Maalek Ghaini, F. M.; Li, M., Chebyshev wavelets method for solution of nonlinear fractional integrodifferential equations in a large interval, Advances in Mathematical Physics, 2013 (2013) · Zbl 1291.65245
[16] Povstenko, Y. Z., Fundamental solutions to time-fractional advection diffusion equation in a case of two space variables, Mathematical Problems in Engineering, 2014 (2014) · Zbl 1407.35217 · doi:10.1155/2014/705364
[17] Yu, B.; Jiang, X., A fractional anomalous diffusion model and numerical simulation for sodium ion transport in the intestinal wall, Advances in Mathematical Physics, 2013 (2013) · Zbl 1291.76306
[18] Zhao, Y.; Xiao, A.; Li, L.; Zhang, C., Variational iteration method for singular perturbation initial value problems with delays, Mathematical Problems in Engineering, 2014 (2014) · Zbl 1407.65088 · doi:10.1155/2014/850343
[19] Sun, F. X.; Liu, C.; Cheng, Y. M., An improved interpolating element-free Galerkin method based on nonsingular weight functions, Mathematical Problems in Engineering, 2014 (2014) · Zbl 1407.74091 · doi:10.1155/2014/323945
[20] Rostamy, D.; Alipour, M.; Jafari, H.; Baleanu, D., Solving multi-term orders fractional matrices of Bps with convergence analysis, Romanian Reports in Physics, 65, 334-349 (2013)
[21] Garcia, J. J. R.; Calderon, M. G.; Ortiz, J. M.; Baleanu, D., Motion of a particle in a resisting medium using fractional calculus approach, Proceedings of the Romanian Academy A: Mathematics, Physics, Technical Sciences, Information Science, 14, 1, 42-47 (2013)
[22] Ishiwata, E.; Muroya, Y., Rational approximation method for delay differential equations with proportional delay, Applied Mathematics and Computation, 187, 2, 741-747 (2007) · Zbl 1117.65105 · doi:10.1016/j.amc.2006.08.086
[23] Chen, X.; Wang, L., The variational iteration method for solving a neutral functional-differential equation with proportional delays, Computers & Mathematics with Applications, 59, 8, 2696-2702 (2010) · Zbl 1193.65145 · doi:10.1016/j.camwa.2010.01.037
[24] Heydari, M.; Loghmani, G. B.; Hosseini, S. M., Operational matrices of Chebyshev cardinal functions and their application for solving delay differential equations arising in electrodynamics with error estimation, Applied Mathematical Modelling, 37, 14-15, 7789-7809 (2013) · Zbl 1449.65141 · doi:10.1016/j.apm.2013.02.049
[25] Tohidi, E.; Bhrawy, A. H.; Erfani, K., A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Applied Mathematical Modelling, 37, 6, 4283-4294 (2013) · Zbl 1273.34082 · doi:10.1016/j.apm.2012.09.032
[26] Doha, E. H.; Bhrawy, A. H.; Baleanu, D.; Hafez, R. M., A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations, Applied Numerical Mathematics, 77, 43-54 (2014) · Zbl 1302.65175 · doi:10.1016/j.apnum.2013.11.003
[27] Tripathi, M. P.; Baranwal, V. K.; Pandey, R. K.; Singh, O. P., A new numerical algorithm to solve fractional differential equations based on operational matrix of generalized hat functions, Communications in Nonlinear Science and Numerical Simulation, 18, 6, 1327-1340 (2013) · Zbl 1284.65086 · doi:10.1016/j.cnsns.2012.10.014
[28] Bhrawy, A. H.; Al-Shomrani, M. M., A shifted Legendre spectral method for fractional-order multi-point boundary value problems, Advances in Difference Equations, 2012, article 8 (2012) · Zbl 1280.65074
[29] Ma, X.; Huang, C., Spectral collocation method for linear fractional integro-differential equations, Applied Mathematical Modelling, 38, 4, 1434-1448 (2014) · Zbl 1427.65421 · doi:10.1016/j.apm.2013.08.013
[30] Yang, Y.; Huang, Y., Spectral-collocation methods for fractional pantograph delay-integrodifferential equations, Advances in Mathematical Physics, 2013 (2013) · Zbl 1291.65249 · doi:10.1155/2013/821327
[31] Yin, F.; Song, J.; Wu, Y.; Zhang, L., Numerical solution of the fractional partial differential equations by the two-dimensional fractional-order Legendre functions, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.65310 · doi:10.1155/2013/562140
[32] Yin, F.; Song, J.; Leng, H.; Lu, F., Couple of the variational iteration method and fractional-order Legendre functions method for fractional differential equations, The Scientific World Journal, 2014 (2014) · doi:10.1155/2014/928765
[33] Kamrani, M., Numerical solution of stochastic fractional differential equations, Numerical Algorithms (2014)
[34] Bhrawy, A. H.; Alghamdi, M. A., The operational matrix of Caputo fractional derivatives of modified generalized Laguerre polynomials and its applications, Advances in Difference Equations, 2013, article 307 (2013) · Zbl 1444.65023 · doi:10.1186/1687-1847-2013-307
[35] Baleanu, D.; Bhrawy, A. H.; Taha, T. M., A modified generalized Laguerre spectral method for fractional differential equations on the half line, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.65239 · doi:10.1155/2013/413529
[36] Bhrawy, A. H.; Alghamdi, M. M.; Taha, T. M., A new modified generalized Laguerre operational matrix of fractional integration for solving fractional differential equations on the half line, Advances in Difference Equations, 2012, article 179 (2012) · Zbl 1380.34008 · doi:10.1186/1687-1847-2012-179
[37] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), New York, NY, USA: Springer, New York, NY, USA · Zbl 0658.76001 · doi:10.1007/978-3-642-84108-8
[38] Fornberg, B., A practical Guide to Pseudospectral Methods (1996), Cambridge, mass, USA: Cambridge University Press, Cambridge, mass, USA · Zbl 0844.65084 · doi:10.1017/CBO9780511626357
[39] Doha, E. H.; Bhrawy, A. H.; Hafez, R. M., On shifted Jacobi spectral method for high-order multi-point boundary value problems, Communications in Nonlinear Science and Numerical Simulation, 17, 10, 3802-3810 (2012) · Zbl 1251.65112 · doi:10.1016/j.cnsns.2012.02.027
[40] Doha, E. H.; Bhrawy, A. H., An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method, Computers & Mathematics with Applications, 64, 4, 558-571 (2012) · Zbl 1252.65194 · doi:10.1016/j.camwa.2011.12.050
[41] Peyret, R., Spectral Methods for Incompressible Viscous Flow (2002), New York, NY, USA: Springer, New York, NY, USA · Zbl 1005.76001 · doi:10.1007/978-1-4757-6557-1
[42] Bhrawy, A. H., A Jacobi-Gauss-Lobatto collocation method for solving generalized Fitzhugh-Nagumo equation with time-dependent coefficients, Applied Mathematics and Computation, 222, 255-264 (2013) · Zbl 1329.65234 · doi:10.1016/j.amc.2013.07.056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.