×

A new modified generalized Laguerre operational matrix of fractional integration for solving fractional differential equations on the half line. (English) Zbl 1380.34008

Summary: In this paper, we derived a new operational matrix of fractional integration of arbitrary order for modified generalized Laguerre polynomials. The fractional integration is described in the Riemann-Liouville sense. This operational matrix is applied together with the modified generalized Laguerre tau method for solving general linear multi-term fractional differential equations (FDEs). Only small dimension of a modified generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the present method is very effective and convenient for linear multi-term FDEs on a semi-infinite interval.

MSC:

34A08 Fractional ordinary differential equations
34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
34A30 Linear ordinary differential equations and systems

References:

[1] Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999. · Zbl 0924.34008
[2] Das S: Functional Fractional Calculus for System Identification and Controls. Springer, New York; 2008. · Zbl 1253.26010
[3] Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations. Elsevier, San Diego; 2006. · Zbl 1092.45003
[4] Baleanu D, Diethelm K, Scalas E, Trujillo JJ: Fractional Calculus Models and Numerical Methods. World Scientific, Singapore; 2012. Series on Complexity, Nonlinearity and Chaos · Zbl 1248.26011
[5] Chen A, Chen Y: Existence of solutions to nonlinear Langevin equation involving two fractional orders with boundary value conditions.Bound. Value Probl. 2011, 2011:17. · Zbl 1270.35302 · doi:10.1186/1687-2770-2011-17
[6] Bhrawy AH, Al-Shomrani MM: A shifted Legendre spectral method for fractional-order multi-point boundary value problems.Adv. Differ. Equ. 2012, 2012:8. · Zbl 1280.65074 · doi:10.1186/1687-1847-2012-8
[7] Baleanu D, Mustafa OG, Agarwal RP: An existence result for a superlinear fractional differential equation.Appl. Math. Lett. 2010, 23:1129-1132. · Zbl 1200.34004 · doi:10.1016/j.aml.2010.04.049
[8] Baleanu, D.; Mustafa, OG; Agarwal, RP, On the solution set for a class of sequential fractional differential equations, No. 43 (2010) · Zbl 1216.34004
[9] Lakestani M, Dehghan M, Irandoust-pakchin S: The construction of operational matrix of fractional derivatives using B-spline functions.Commun. Nonlinear Sci. Numer. Simul. 2012, 17:1149-1162. · Zbl 1276.65015 · doi:10.1016/j.cnsns.2011.07.018
[10] Sabatier, J.; Nguyen, H.; Farges, C.; Deletage, J-Y; Moreau, X.; Guillemard, F.; Bavoux, B., Fractional models for thermal modeling and temperature estimation of a transistor junction, No. 2011 (2011) · Zbl 1344.93016
[11] Pedas A, Tamme E: Piecewise polynomial collocation for linear boundary value problems of fractional differential equations.J. Comput. Appl. Math. 2012, 236:3349-3359. · Zbl 1245.65104 · doi:10.1016/j.cam.2012.03.002
[12] Yuzbasi, S., Numerical solution of the Bagley-Torvik equation by the Bessel collocation method (2012)
[13] Ahmad B, Nieto JJ, Alsaedi A, El-Shahed M: A study of nonlinear Langevin equation involving two fractional orders in different intervals.Nonlinear Anal., Real World Appl. 2012, 13:599-606. · Zbl 1238.34008 · doi:10.1016/j.nonrwa.2011.07.052
[14] Canuto C, Hussaini MY, Quarteroni A, Zang TA: Spectral Methods in Fluid Dynamics. Springer, New York; 1989.
[15] Boyd JP: Chebyshev and Fourier Spectral Methods. 2nd edition. Dover, Mineola; 2001. · Zbl 0994.65128
[16] Doha EH, Bhrawy AH, Saker MA: On the derivatives of Bernstein polynomials: An application for the solution of higher even-order differential equations.Bound. Value Probl. 2011, 2011:16. · Zbl 1220.33006 · doi:10.1155/2011/829543
[17] Doha EH, Abd-Elhameed WM, Bhrawy AH: Efficient spectral ultraspherical- Galerkin algorithms for the direct solution of 2nd-order linear differential equations.Appl. Math. Model. 2009, 33:1982-1996. · Zbl 1205.65224 · doi:10.1016/j.apm.2008.05.005
[18] Saadatmandi A, Dehghan M: A new operational matrix for solving fractional-order differential equations.Comput. Math. Appl. 2010, 59:1326-1336. · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[19] Doha EH, Bhrawy AH, Ezz-Eldien SS: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations.Appl. Math. Model. 2011, 35:5662-5672. · Zbl 1228.65126 · doi:10.1016/j.apm.2011.05.011
[20] Bhrawy AH, Alofi AS, Ezz-Eldien SS: A quadrature tau method for fractional differential equations with variable coefficients.Appl. Math. Lett. 2011, 24:2146-2152. · Zbl 1269.65068 · doi:10.1016/j.aml.2011.06.016
[21] Guo B-Y, Zhang X-Y: A new generalized Laguerre approximation and its applications.J. Comput. Appl. Math. 2005, 181:342-363. · Zbl 1072.65155 · doi:10.1016/j.cam.2004.12.008
[22] Guo B-Y, Wang L-L: Modified Laguerre pseudospectral method refined by multidomain Legendre pseudospectral approximation.J. Comput. Appl. Math. 2006, 190:304-324. · Zbl 1087.65079 · doi:10.1016/j.cam.2004.11.053
[23] Funaro, D.; Brezinski, C. (ed.); Gori, L. (ed.); Ronveaux, A. (ed.), Estimates of Laguerre spectral projectors in Sobolev spaces, 263-266 (1991), Singapore · Zbl 0842.46017
[24] Yan J-P, Guo B-Y: A collocation method for initial value problems of second order ODEs by using Laguerre function.Numer. Math. Theor. Meth. Appl. 2011, 4:283-295. · Zbl 1249.65153
[25] Gulsu M, Gurbuz B, Ozturk Y, Sezer M: Laguerre polynomial approach for solving linear delay difference equations.Appl. Math. Comput. 2011, 217:6765-6776. · Zbl 1211.65166 · doi:10.1016/j.amc.2011.01.112
[26] Doha EH, Bhrawy AH, Ezz-Eldien SS: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order.Comput. Math. Appl. 2011, 62:2364-2373. · Zbl 1231.65126 · doi:10.1016/j.camwa.2011.07.024
[27] Doha EH, Bhrawy AH, Ezz-Eldien SS: A new Jacobi operational matrix: an application for solving fractional differential equations.Appl. Math. Model. 2012, 36:4931-4943. · Zbl 1252.34019 · doi:10.1016/j.apm.2011.12.031
[28] Bhrawy AH, Alghamdi MA: A shifted Jacobi-Gauss-Lobatto Collocation method for solving nonlinear fractional Langevin equation.Bound. Value Probl. 2012, 2012:62. · Zbl 1280.65079 · doi:10.1186/1687-2770-2012-62
[29] El-Danaf TS, Ramadan MA, Sherif MN: Error analysis, stability, and numerical solutions of fractional-order differential equations.Int. J. Pure Appl. Math. 2012, 76:647-659.
[30] Kadem A, Baleanu D: Fractional radiative transfer equation within Chebyshev spectral approach.Comput. Math. Appl. 2010, 59:1865-1873. · Zbl 1189.35359 · doi:10.1016/j.camwa.2009.08.030
[31] Jiang, Y-L; Ding, X-L, Waveform relaxation methods for fractional differential equations with the Caputo derivatives (2012)
[32] Bhrawy, AH; Tharwat, MM; Yildirim, A., A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi-term fractional differential equations (2012)
[33] Bhrawy, AH, Tharwat, MM, Alghamdi, MA: A new operational matrix of fractional integration for shifted Jacobi polynomials. Bull. Malays. Math. Soc. (2012, accepted) · Zbl 1255.65147
[34] Paraskevopoulos PN: Chebyshev series approach to system identification, analysis and control.J. Franklin Inst. 1983, 316:135-157. · Zbl 0538.93013 · doi:10.1016/0016-0032(83)90082-0
[35] Doha EH, Ahmed HM, El-Soubhy SI: Explicit formulae for the coefficients of integrated expansions of Laguerre and Hermite polynomials and their integrals.Integral Transforms Spec. Funct. 2009, 20:491-503. · Zbl 1169.42314 · doi:10.1080/10652460802030672
[36] Singh AK, Singh VK, Singh OP: The Bernstein operational matrix of integration.Appl. Math. Sci. 2009,3(49):2427-2436. · Zbl 1185.41006
[37] Bhrawy AH, Alofi AS: The operational matrix of fractional integration for shifted Chebyshev polynomials.Appl. Math. Lett. 2013, 26:25-31. · Zbl 1255.65147 · doi:10.1016/j.aml.2012.01.027
[38] Ford NJ, Connolly JA: Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations.J. Comput. Appl. Math. 2009, 229:382-391. · Zbl 1166.65066 · doi:10.1016/j.cam.2008.04.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.