×

Strong solvability of a variational data assimilation problem for the primitive equations of large-scale atmosphere and Ocean dynamics. (English) Zbl 1462.35406

Summary: For the primitive equations of large-scale atmosphere and ocean dynamics, we study the problem of determining by means of a variational data assimilation algorithm initial conditions that generate strong solutions which minimize the distance to a given set of time-distributed observations. We suggest a modification of the adjoint algorithm whose novel elements is to use norms in the variational cost functional that reflects the \(H^1\)-regularity of strong solutions of the primitive equations. For such a cost functional, we prove the existence of minima and a first-order adjoint condition for strong solutions that provides the basis for computing these minima. We prove the local convergence of a gradient-based descent algorithm to optimal initial conditions using the second-order adjoint primitive equations. The algorithmic modifications due to the \(H^1\)-norms are straightforwardly to implement into a variational algorithm that employs the standard \(L^2\)-metrics.

MSC:

35Q86 PDEs in connection with geophysics
35Q35 PDEs in connection with fluid mechanics
49J20 Existence theories for optimal control problems involving partial differential equations
49N15 Duality theory (optimization)
76D55 Flow control and optimization for incompressible viscous fluids
93C20 Control/observation systems governed by partial differential equations
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
35D35 Strong solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs

Software:

EnKF; ECCO

References:

[1] Agoshkov, VI; Ipatova, VM, Solvability of the observation data assimilation problem in the three-dimensional model of ocean dynamics, Differ. Equ., 43, 1088-110 (2007) · Zbl 1181.86004 · doi:10.1134/S0012266107080071
[2] Azouani, A.; Titi, ES, Feedback control of nonlinear dissipative systems by finite determining parameters—a reaction-diffusion paradigm, Equ. Control Theory, 3, 4, 579-594 (2014) · Zbl 1304.35715 · doi:10.3934/eect.2014.3.579
[3] Abergel, F.; Temam, R., On some control problems in fluid mechanics, Theor. Comput. Fluid Dyn., 1, 303-325 (1990) · Zbl 0708.76106 · doi:10.1007/BF00271794
[4] Bewley, TR; Moin, P.; Temam, R., DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms, J. Fluid Mech., 447, 179-225 (2001) · Zbl 1036.76027 · doi:10.1017/S0022112001005821
[5] Bonavita, M.; Lean, P.; Holm, E., Nonlinear effects in 4D-Var, Nonlinear Processes Geophys., 25, 713-729 (2018) · doi:10.5194/npg-25-713-2018
[6] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2010), Berlin: Springer, Berlin · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7
[7] Cao, C.; Titi, ES, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. Math., 166, 245-267 (2007) · Zbl 1151.35074 · doi:10.4007/annals.2007.166.245
[8] Cao, C.; Titi, ES, Global Well-Posedness and finite-dimensional global attractor for a 3D planetary geostrophic viscous model, Commun. Pure Appl. Math., 56, 198-233 (2003) · Zbl 1035.37043 · doi:10.1002/cpa.10056
[9] Chueshov, I., A squeezing property and its applications to a description of long-time behaviour in the three-dimensional viscous primitive equations, Proc. R. Soc. Edinb. Sect. A, 144, 711-729 (2014) · Zbl 1297.35179 · doi:10.1017/S0308210512001953
[10] Desamsetti, S.; Dasari, HP; Langodan, S.; Titi, ES; Knio, O.; Hoteit, I., Efficient dynamical downscaling of general circulation models using continuous data assimilation, Q. J. R. Soc., 145, 3175-3194 (2019) · doi:10.1002/qj.3612
[11] Evensen, G., The Ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dyn., 53, 343-367 (2003) · doi:10.1007/s10236-003-0036-9
[12] Farhat, A.; Lunasin, E.; Titi, ES, On the Charney conjecture of data assimilation employing temperature measurements alone: the paradigm of 3D planetary geostrophic model, Math. Clim. Weather Forecast., 2, 61-74 (2016) · Zbl 1364.86017
[13] Foias, C.; Mondaini, S.; Titi, ES, A Discrete Data Assimilation Scheme for the Solutions of the 2D Navier-Stokes Equations and their Statistics, SIAM J. Appl. Dyn. Syst., 15, 2109-2142 (2016) · Zbl 1362.35208 · doi:10.1137/16M1076526
[14] Forget, G.; Campin, J-M; Heimbach, P.; Hill, CN; Ponte, RM; Wunsch, C., ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071-3104 (2015) · doi:10.5194/gmd-8-3071-2015
[15] Fursikov, AV, Optimal Control of Distributed Systems (1999), Providence: American Mathematical Society, Providence · Zbl 0938.93003
[16] Gauthier, P.; Tanguay, M.; Laroche, S.; Pellerin, S.; Morneau, J., Extension of 3DVAR to 4DVAR: implementation of 4DVAR at the meteorological service of Canada, Mon. Weather Rev., 135, 2339-2354 (2007) · doi:10.1175/MWR3394.1
[17] Guillén-González, F.; Masmoudi, N.; Rodríguez-Bellido, MA, Anisotropic estimates and strong solutions of the primitive equations, Differ. Integral Equ., 14, 1381-1408 (2001) · Zbl 1161.76454
[18] Hieber, M.; Kashiwabara, T., Global strong well-posedness of the three dimensional primitive equations in \(L^p\)-spaces, Arch. Ration. Mech. Anal., 221, 1077-1115 (2016) · Zbl 1350.35155 · doi:10.1007/s00205-016-0979-x
[19] Gibbon, JD; Holm, DD, Enstrophy bounds and the range of space-time scales in the hydrostatic primitive equations, Phys. Rev. E, 87, 031001 (2013) · doi:10.1103/PhysRevE.87.031001
[20] Gibbon, JD; Holm, DD, Extreme events in solutions of hydrostatic and non-hydrostatic climate models, Philos. Trans. R. Soc. A, 369, 1156-1179 (2011) · Zbl 1219.86004 · doi:10.1098/rsta.2010.0244
[21] Hoteit, I.; Cornuelle, B.; Köhl, A.; Stammer, D., Treating strong adjoint sensitivities in tropical eddy-permitting variational data assimilation, Q. J. Roy. Soc., 131, 3659-3682 (2005) · doi:10.1256/qj.05.97
[22] Houtekamer, PL; Zhang, F., Review of the ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 144, 4489-4532 (2016) · doi:10.1175/MWR-D-15-0440.1
[23] Isaksen, L., Bonavita, M., Buizza, R., Fisher, M., Haseler, J., Leutbecher, M., Raynaud, L.: Ensemble of data assimilations at ECMWF. ECMWF Technical memorandum 636. https://www.ecmwf.int/en/elibrary/ 10125-ensemble-data-assimilations-ecmwf
[24] Ju, N., The global attractor for the solutions to the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 17, 711-729 (2007) · Zbl 1131.35065 · doi:10.3934/dcds.2007.17.159
[25] Kalnay, E., Atmosheric Modeling, Data Assimilation and Predictability (2003), Cambridge: Cambridge University Press, Cambridge
[26] Kobelkov, GM, Existence of a solution “in the large” for ocean dynamics equations, J. Math. Fuid Mech., 10, 1-23 (2007) · Zbl 1132.35443
[27] Köhl, A.; Willebrand, J., An adjoint method for the assimilation of statistical characteristics into eddy-resolving ocean models, Tellus, 54, 406-425 (2002) · doi:10.3402/tellusa.v54i4.12150
[28] Korn, P., A regularity-aware algorithm for variational data assimilation of an idealized coupled atmosphere-ocean model, J. Sci. Comput., 79, 748-786 (2019) · Zbl 1447.35330 · doi:10.1007/s10915-018-0871-y
[29] Korn, P., Data assimilation for the Navier-Stokes-\( \alpha\) equations, Physica D, 238, 1957-1974 (2009) · Zbl 1172.76015 · doi:10.1016/j.physd.2009.07.008
[30] Kukavica, I.; Pei, Y.; Rusin, W.; Ziane, M., Primitive equations with continuous initial data, Nonlinearity, 27, 1-21 (2014) · Zbl 1291.35187 · doi:10.1088/0951-7715/27/6/1135
[31] Kukavica, I.; Ziane, M., On the regularity of the primitive equations of the ocean, Nonlinearity, 20, 2739-2753 (2007) · Zbl 1136.35069 · doi:10.1088/0951-7715/20/12/001
[32] Lions, JL; Temam, R.; Wang, S., On the equation of the large scale ocean, Nonlinearity, 5, 1007-1053 (1992) · Zbl 0766.35039 · doi:10.1088/0951-7715/5/5/002
[33] Li, J., Titi, E.S.: The primitive equations as the small aspect ratio limit of the Navier-Stokes equations: Rigorous justification of the hydrostatic approximation. J. Math Pures et Appl., 124, 30-58 (2019) · Zbl 1412.35224
[34] Li, J.; Titi, ES; Giga, Y.; Novotny, A., Recent advances concerning certain class of geophysical flows, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), Berlin: Springer, Berlin
[35] Lorenc, A., Modelling of error covariances by 4D-Var data assimilation, Q. J. R. Meteorol. Soc., 129, 3167-3182 (2003) · doi:10.1256/qj.02.131
[36] Marchuk, GI; Agoshkov, VI; Shutyaev, VP, Adjoint Equations and Perturbation Algorithms in Nonlinear Problems (1996), Boca Raton: CRC Press, Boca Raton · Zbl 1435.65008
[37] Necas, J., Direct Methods in the Theory of Elliptic Equations (2012), Berlin: Springer, Berlin · Zbl 1246.35005 · doi:10.1007/978-3-642-10455-8
[38] Pei, W., Continuous data assimilation for the 3D primitive equations of the ocean, Commun. Pure Appl Anal., 19, 643-661 (2019) · Zbl 1404.35370 · doi:10.3934/cpaa.2019032
[39] Petcu, M.; Temam, R.; Ziane, M.; Friedlander, S.; Serre, D., Some mathematical problems in geophysical fluid dynamics, Handbook of Mathematical Fluid Dynamics, 535-657 (2009), Amsterdam: North Holland, Amsterdam
[40] Reich, S.; Cotter, C., Probabilistic Forecasting and Bayesian Data Assimilation (2015), Cambridge: Cambridge University Press, Cambridge · Zbl 1314.62005 · doi:10.1017/CBO9781107706804
[41] Schillings, C.; Stuart, AM, Analysis of the ensemble Kalman filter for inverse problems, SIAM J. Numer. Anal., 55, 1264-1290 (2017) · Zbl 1366.65101 · doi:10.1137/16M105959X
[42] Schillings, C.; Stuart, AM, Convergence analysis of ensemble Kalman inversion: the linear, noisy case, Appl. Anal., 97, 107-123 (2018) · Zbl 1448.65209 · doi:10.1080/00036811.2017.1386784
[43] Shutyaev, VP, Solvability of the data assimilation problem in the scale of Hilbert spaces for quasilinear singularly perturbed evolutionary problems, Russ. J. Numer. Anal. Math. Model., 12, 53-66 (1997) · Zbl 0872.65046 · doi:10.1515/rnam.1997.12.1.53
[44] Medjo, T. Tachim; Temam, R.; Ziane, M., Optimal and robust control of fluid flow: some theoretical and computational aspects, Appl. Mech. Rev., 61, 1-23 (2008) · Zbl 1145.76341 · doi:10.1115/1.2830523
[45] Weaver, A.; Courtier, P., Correlation modelling on the sphere using a generalized diffusion equation, Q. J. R. Meteorol. Soc., 127, 1815-1846 (2001) · doi:10.1002/qj.49712757518
[46] Wunsch, C., The Ocean Circulation Inverse Problem (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0886.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.