×

A final result on the oscillation of solutions of the linear discrete delayed equation \({\Delta}x(n) = -p(n)x(n - k)\) with a positive coefficient. (English) Zbl 1223.39008

Summary: A linear \((k + 1)\)th-order discrete delayed equation \({\Delta}x(n) = -p(n)x(n - k)\) where \(p(n)\) is a positive sequence is considered for \(n \rightarrow \infty\). This equation is known to have a positive solution if the sequence \(p(n)\) satisfies an inequality. Our aim is to show that, in the case of the opposite inequality for \(p(n)\), all solutions of the equation considered are oscillating for \(n \rightarrow \infty\).

MSC:

39A21 Oscillation theory for difference equations
39A12 Discrete version of topics in analysis
34K11 Oscillation theory of functional-differential equations
39A22 Growth, boundedness, comparison of solutions to difference equations

References:

[1] R. P. Agarwal, M. Bohner, and W.-T. Li, Nonoscillation and Oscillation: Theory for Functional Differential Equations, vol. 267 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2004. · Zbl 1213.54055 · doi:10.1201/9780203025741
[2] R. P. Agarwal and A. Zafer, “Oscillation criteria for second-order forced dynamic equations with mixed nonlinearities,” Advances in Difference Equations, vol. 2009, Article ID 938706, 2009 pages, 2009. · Zbl 1181.34099 · doi:10.1155/2009/938706
[3] J. Ba\vstinec, L. Berezansky, J. Diblík, and Z. \vSmarda, “On the critical case in oscillation for differential equations with a single delay and with several delays,” Abstract and Applied Analysis, vol. 2010, Article ID 417869, 20 pages, 2010. · Zbl 1209.34080 · doi:10.1155/2010/417869
[4] J. Ba\vstinec, J. Diblík, and Z. \vSmarda, “Existence of positive solutions of discrete linear equations with a single delay,” Journal of Difference Equations and Applications, vol. 16, no. 9, pp. 1047-1056, 2010. · Zbl 1207.39014 · doi:10.1080/10236190902718026
[5] J. Ba\vstinec, J. Diblík, and Z. \vSmarda, “Oscillation of solutions of a linear second-order discretedelayed equation,” Advances in Difference Equations, vol. 2010, Article ID 693867, 12 pages, 2010. · Zbl 1200.39002 · doi:10.1155/2010/693867
[6] L. Berezansky and E. Braverman, “On existence of positive solutions for linear difference equations with several delays,” Advances in Dynamical Systems and Applications, vol. 1, no. 1, pp. 29-47, 2006. · Zbl 1124.39002
[7] L. Berezansky and E. Braverman, “Oscillation of a logistic difference equation with several delays,” Advances in Difference Equations, vol. 2006, Article ID 82143, 12 pages, 2006. · Zbl 1133.39004 · doi:10.1155/ADE/2006/82143
[8] M. Bohner, B. Karpuz, and Ö. Öcalan, “Iterated oscillation criteria for delay dynamic equations of first order,” Advances in Difference Equations, vol. 2008, Article ID 458687, 12 pages, 2008. · Zbl 1160.39302 · doi:10.1155/2008/458687
[9] G. E. Chatzarakis, R. Koplatadze, and I. P. Stavroulakis, “Oscillation criteria of first order linear difference equations with delay argument,” Nonlinear Analysis, vol. 68, no. 4, pp. 994-1005, 2008. · Zbl 1144.39003 · doi:10.1016/j.na.2006.11.055
[10] J. Diblík, “Positive and oscillating solutions of differential equations with delay in critical case,” Journal of Computational and Applied Mathematics, vol. 88, no. 1, pp. 185-202, 1998. · Zbl 0898.34062 · doi:10.1016/S0377-0427(97)00217-3
[11] J. Diblík and N. Koksch, “Positive solutions of the equation x\?(t)= - c(t)x(t - \tau ) in the critical case,” Journal of Mathematical Analysis and Applications, vol. 250, no. 2, pp. 635-659, 2000. · Zbl 0968.34057 · doi:10.1006/jmaa.2000.7008
[12] J. Diblík, Z. Svoboda, and Z. \vSmarda, “Explicit criteria for the existence of positive solutions for a scalar differential equation with variable delay in the critical case,” Computers & Mathematics with Applications, vol. 56, no. 2, pp. 556-564, 2008. · Zbl 1155.34337 · doi:10.1016/j.camwa.2008.01.015
[13] Y. Domshlak, “Oscillation properties of discrete difference inequalities and equations: the new approach,” in Functional-Differential Equations, vol. 1 of Functional Differential Equations Israel Seminar, pp. 60-82, Coll. Judea Samaria, Ariel, Israel, 1993. · Zbl 0858.39008
[14] Y. Domshlak and I. P. Stavroulakis, “Oscillations of first-order delay differential equations in a critical state,” Applicable Analysis, vol. 61, no. 3-4, pp. 359-371, 1996. · Zbl 0882.34069 · doi:10.1080/00036819608840464
[15] B. Dorociaková and R. Olach, “Existence of positive solutions of delay differential equations,” Tatra Mountains Mathematical Publications, vol. 43, pp. 63-70, 2009. · Zbl 1212.34232
[16] S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, Springer, New York, NY, USA, 3rd edition, 2005. · Zbl 1071.39001
[17] Á. Elbert and I. P. Stavroulakis, “Oscillation and nonoscillation criteria for delay differential equations,” Proceedings of the American Mathematical Society, vol. 123, no. 5, pp. 1503-1510, 1995. · Zbl 0828.34057 · doi:10.2307/2161141
[18] L. H. Erbe and B. G. Zhang, “Oscillation of discrete analogues of delay equations,” Differential and Integral Equations, vol. 2, no. 3, pp. 300-309, 1989. · Zbl 0723.39004
[19] I. Gy\Hori and G. Ladas, Oscillation Theory of Delay Differential Equations, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, NY, USA, 1991. · Zbl 0780.34048
[20] L. Hanu and R. Olach, “Nonoscillatory bounded solutions of neutral differential systems,” Nonlinear Analysis, vol. 68, no. 7, pp. 1816-1824, 2008. · Zbl 1147.34350 · doi:10.1016/j.na.2007.01.014
[21] L. K. Kikina and I. P. Stavroulakis, “A survey on the oscillation of solutions of first order delay difference equations,” Cubo, vol. 7, no. 2, pp. 223-236, 2005. · Zbl 1106.39008
[22] G. Ladas, Ch. G. Philos, and Y. G. Sficas, “Sharp conditions for the oscillation of delay difference equations,” Journal of Applied Mathematics and Simulation, vol. 2, no. 2, pp. 101-111, 1989. · Zbl 0685.39004
[23] R. Medina and M. Pituk, “Nonoscillatory solutions of a second-order difference equation of Poincaré type,” Applied Mathematics Letters, vol. 22, no. 5, pp. 679-683, 2009. · Zbl 1169.39004 · doi:10.1016/j.aml.2008.04.015
[24] V. E. Slyusarchuk, “Necessary and sufficient conditions for the oscillation of solutions of nonlinear differential equations with impulse action in a Banach space,” Ukrainian Mathematical Journal, vol. 51, no. 1, pp. 98-109, 1999. · Zbl 0938.34024 · doi:10.1007/BF02487410
[25] I. P. Stavroulakis, “Oscillation criteria for first order delay difference equations,” Mediterranean Journal of Mathematics, vol. 1, no. 2, pp. 231-240, 2004. · Zbl 1072.39010 · doi:10.1007/s00009-004-0013-7
[26] X. H. Tang and J. S. Yu, “Oscillations of delay difference equations in a critical state,” Applied Mathematics Letters, vol. 13, no. 2, pp. 9-15, 2000. · Zbl 0973.39009 · doi:10.1016/S0893-9659(99)00158-5
[27] X. H. Tang and J. S. Yu, “Oscillation of delay difference equations,” Computers & Mathematics with Applications, vol. 37, pp. 11-20, 1999. · Zbl 0976.39005 · doi:10.1016/S0898-1221(99)00301-6
[28] B. G. Zhang and S. S. Cheng, “Oscillation criteria and comparison theorems for delay difference equations,” Fasciculi Mathematici, no. 25, pp. 13-32, 1995. · Zbl 0830.39005
[29] Y. Zhou and B. G. Zhang, “Oscillations of delay difference equations in a critical state,” Computers & Mathematics with Applications, vol. 39, no. 7-8, pp. 71-80, 2000. · Zbl 0958.39017 · doi:10.1016/S0898-1221(00)00066-3
[30] R. Y. Zhang, Z. C. Wang, and X. Zou, “Oscillation of delay difference equations: near a critical case,” Dynamics of Continuous, Discrete & Impulsive Systems. Series A. Mathematical Analysis, vol. 9, no. 1, pp. 89-103, 2002. · Zbl 1002.39021
[31] L. Berg, “On the asymptotics of nonlinear difference equations,” Zeitschrift für Analysis und Ihre Anwendungen, vol. 21, no. 4, pp. 1061-1074, 2002. · Zbl 1030.39006 · doi:10.4171/ZAA/1127
[32] L. Berg, “Inclusion theorems for non-linear difference equations with applications,” Journal of Difference Equations and Applications, vol. 10, no. 4, pp. 399-408, 2004. · Zbl 1056.39003 · doi:10.1080/10236190310001625280
[33] L. Berg, “On the asymptotics of the difference equation xn+1=xnxn - 2 - 1,” Journal of Difference Equations and Applications, vol. 14, no. 1, pp. 105-108, 2008. · Zbl 1138.39003 · doi:10.1080/10236190701503041
[34] B. Iri\vcanin and S. Stević, “Eventually constant solutions of a rational difference equation,” Applied Mathematics and Computation, vol. 215, no. 2, pp. 854-856, 2009. · Zbl 1178.39012 · doi:10.1016/j.amc.2009.05.044
[35] C. M. Kent, W. Kosmala, and S. Stevi\vc, “On the difference equation,” Abstract and Applied Analysis, vol. 2011, Article ID 815285, 15 pages, 2011. · Zbl 1216.39016 · doi:10.1155/2011/815285
[36] S. Stević, “On the recursive sequence xn+1=xn - 1/g(xn),” Taiwanese Journal of Mathematics, vol. 6, no. 3, pp. 405-414, 2002. · Zbl 1019.39010
[37] S. Stević, “Global stability and asymptotics of some classes of rational difference equations,” Journal of Mathematical Analysis and Applications, vol. 316, no. 1, pp. 60-68, 2006. · Zbl 1090.39009 · doi:10.1016/j.jmaa.2005.04.077
[38] S. Stević, “On monotone solutions of some classes of difference equations,” Discrete Dynamics in Nature and Society, vol. 2006, Article ID 53890, 9 pages, 2006. · Zbl 1109.39013 · doi:10.1155/DDNS/2006/53890
[39] S. Stević, “On positive solutions of a(k+1)-th order difference equation,” Applied Mathematics Letters, vol. 19, no. 5, pp. 427-431, 2006. · Zbl 1095.39010 · doi:10.1016/j.aml.2005.05.014
[40] S. Stević, “Asymptotics of some classes of higher-order difference equations,” Discrete Dynamics in Nature and Society, vol. 2007, Article ID 56813, 20 pages, 2007. · Zbl 1180.39009 · doi:10.1155/2007/56813
[41] S. Stević, “Existence of nontrivial solutions of a rational difference equation,” Applied Mathematics Letters, vol. 20, no. 1, pp. 28-31, 2007. · Zbl 1131.39009 · doi:10.1016/j.aml.2006.03.002
[42] S. Stevich, “Nontrivial solutions of higher-order rational difference equations,” Rossiĭskaya Akademiya Nauk, vol. 84, no. 5, pp. 772-780, 2008. · Zbl 1219.39007 · doi:10.1134/S0001434608110138
[43] H. B. Dwight, Tables of Integrals and Other Mathematical Data, The Macmillan Company, New York, NY, USA, 4th edition, 1961. · Zbl 0154.18410
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.