×

Nontrivial solutions of a higher-order rational difference equation. (English. Russian original) Zbl 1219.39007

Math. Notes 84, No. 5, 718-724 (2008); translation from Mat. Zametki 84, No. 5, 772-780 (2008).
Summary: We prove that, for any \(k\in \mathbb N\), the generalized Putnam difference equation \[ x_{n+1}=\frac{x_n+x_{n-1}+\dots + x_{n-(k-1)}+x_{n-k}x_{n-(k+1)}}{x_n x_{n-1}+x_{n-2}+\dots +x_{n-(k+1)}},\quad n \in {\mathbb N}_0, \] with a positive solution has the asymptotics \[ x_n=1+(k+1)e^{-\lambda^n}+(k+1)e^{- c \lambda^n}+o(e^{- c \lambda^n}) \] for some \(c>1\) that depends on \(k\), where \(\lambda\) is a root of the polynomial \(P(\lambda)=\lambda^{k+2}-\lambda-1\) in the interval \((1,2)\). We use this result to prove that this equation has a positive solution that is not equal to one at the limit. Also, for the case \(k = 1\), we find all positive eventually equal to unity solutions to the equation.

MSC:

39A22 Growth, boundedness, comparison of solutions to difference equations
39A10 Additive difference equations
Full Text: DOI

References:

[1] N. Kruse and T. Nesemann, ”Global asymptotic stability in some discrete dynamical systems,” J. Math. Anal. Appl. 235(1), 151–158 (1999). · Zbl 0933.37016 · doi:10.1006/jmaa.1999.6384
[2] X. Yang, ”Global asymptotic stability in a class of generalized Putnam equations,” J. Math. Anal. Appl. 322(2), 693–698 (2006). · Zbl 1104.39012 · doi:10.1016/j.jmaa.2005.09.049
[3] ”The William Lowell Putman Mathematical Competition,” Amer. Math. Monthly, 734–736 (1965).
[4] G. Ladas, ”Open problems and conjectures,” J. Difference Equ. Appl. 4(5), 497–499 (1998). · Zbl 0925.39004 · doi:10.1080/10236199808808157
[5] S. Stević, ”Existence of nontrivial solutions of a rational difference equation,” Appl. Math. Lett. 20(1), 28–31 (2007). · Zbl 1131.39009 · doi:10.1016/j.aml.2006.03.002
[6] L. Berg, ”Inclusion theorems for nonlinear difference equations with applications,” J. Difference Equ. Appl. 10(4), 399–408 (2004). · Zbl 1056.39003 · doi:10.1080/10236190310001625280
[7] L. Berg, Hochschulbücher für Mathematik, Vol. 66: Asymptotische Darstellungen und Entwicklungen (VEB Deutscher Verlag der Wissenschaften, Berlin, 1968).
[8] L. Berg, ”On the asymptotics of nonlinear difference equations,” Z. Anal. Anwendungen 21(4), 1061–1074 (2002). · Zbl 1030.39006 · doi:10.4171/ZAA/1127
[9] L. Berg, ”Corrections to ”Inclusion theorems for nonlinear difference equations with applications,” J. Difference Equ. Appl. 11(2), 181–182 (2005). · Zbl 1080.39002 · doi:10.1080/10236190512331328370
[10] L. Berg and L. v. Wolfersdorf, ”On a class of generalized autoconvolution equations of the third kind,” Z. Anal. Anwendungen 24(2), 217–250 (2005). · Zbl 1104.45001
[11] S. Stević, ”Asymptotic behaviour of a sequence defined by iteration,” Mat. Vesnik 48(3–4), 99–105 (1996). · Zbl 1032.40002
[12] S. Stević, ”Behaviour of the positive solutions of the generalized Beddington-Holt equation,” Panamer. Math. J. 10(4), 77–85 (2000). · Zbl 1039.39005
[13] S. Stević, ”Asymptotic behaviour of a sequence defined by iteration with applications,” Colloq. Math. 93(2), 267–276 (2002). · Zbl 1029.39006 · doi:10.4064/cm93-2-6
[14] S. Stević, ”Asymptotic behaviour of a nonlinear difference equation,” Indian J. Pure Appl. Math. 34(12), 1681–1687 (2003). · Zbl 1049.39012
[15] S. Stević, ”Global stability and asymptotics of some classes of rational difference equations,” J. Math. Anal. Appl. 316(1), 60–68 (2006). · Zbl 1090.39009 · doi:10.1016/j.jmaa.2005.04.077
[16] S. Stević, ”On positive solutions of a (k + 1)th order difference equation,” Appl. Math. Lett. 19(5), 427–431 (2006). · Zbl 1095.39010 · doi:10.1016/j.aml.2005.05.014
[17] S. Stević, ”Asymptotic behavior of a class of nonlinear difference equations,” Discrete Dyn. Nat. Soc. (2006), Article ID 47 156.
[18] S. Stević, ”On monotone solutions of some classes of difference equations,” Discrete Dyn. Nat. Soc. (2006), Article ID 53890.
[19] S. Stević, ”On the recursive sequence x n+1 = x n-1/g(x n),” Taiwanese J. Math. 6(3), 405–414 (2002). · Zbl 1019.39010 · doi:10.11650/twjm/1500558306
[20] T. Sun and H. Xi, ”On the global behaviour of the nonlinear difference equation x n+1 = f(p n, x n-m, x n-t(k+1)+1)),” Discrete Dyn. Nat. Soc. (2006), Article ID 90625.
[21] S. E. Takahasi, Y. Miura, and T. Miura, ”On convergence of a recursive sequence x n+1 = f(x n, x n-1),” Taiwanese J. Math. 10(3), 631–638 (2006). · Zbl 1100.39001 · doi:10.11650/twjm/1500403851
[22] Q. Wang, F. P. Zeng, G. R. Zhang, and X. H. Liu, ”Dynamics of the difference equation · Zbl 1104.39008 · doi:10.1080/10236190500453695
[23] X. Yang, F. Sun, and Y. Y. Tang, ”A new part-metric-related inequality chain and an application,” Discrete Dyn. Nat. Soc. (2008), Article ID 193872.
[24] L. Berg, E-mail Communication, October 09 (2006).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.