×

Numerical solutions of matrix differential models using higher-order matrix splines. (English) Zbl 1256.65069

Summary: This paper deals with the construction of approximate solutions of first-order matrix linear differential equations using higher-order matrix splines. An estimation of the approximation error, an algorithm for its implementation and some illustrative examples are included.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34A30 Linear ordinary differential equations and systems
65L70 Error bounds for numerical methods for ordinary differential equations

References:

[1] Al-Said E.A., Noor M.A.: Cubic splines method for a system of third-order boundary value problems. Appl. Math. Comput. 142, 195–204 (2003) · Zbl 1022.65082 · doi:10.1016/S0096-3003(02)00294-1
[2] Ascher U., Mattheij R., Russell R.: Numerical solutions of boundary value problems for ordinary differential equations. Prentice Hall, New Jersey, USA (1988) · Zbl 0671.65063
[3] Barnett S.: Matrices in Control Theory. Van Nostrand, Reinhold (1971) · Zbl 0245.93002
[4] Blanes S., Casas F., Oteo J.A., Ros J.: Magnus and Fer expansion for matrix differential equations: the convergence problem. J. Phys. Appl. 31, 259–268 (1998) · Zbl 0946.34014
[5] Boggs P.T.: The solution of nonlinear systems of equations by a-stable integration techniques. SIAM J. Numer. Anal. 8(4), 767–785 (1971) · Zbl 0223.65047 · doi:10.1137/0708071
[6] Defez E., Hervás A., Law A., Villanueva-Oller J., Villanueva R.: Matrixcubic splines for progressive transmission of images. J. Math. Imaging Vision 17(1), 41–53 (2002) · Zbl 1020.68099 · doi:10.1023/A:1020774608752
[7] Defez E., Soler L., Hervás A., Santamaría C.: Numerical solutions of matrix differential models using cubic matrix splines. Comput. Math. Appl. 50, 693–699 (2005) · Zbl 1085.65058 · doi:10.1016/j.camwa.2005.04.012
[8] Defez E., Soler L., Hervás A., Tung M.M.: Numerical solutions of matrix differential models using cubic matrix splines II. Mathematical and Computer Modelling 46, 657–669 (2007) · Zbl 1131.65058 · doi:10.1016/j.mcm.2006.11.027
[9] Mazzia F., Trigiante A.S., Trigiante A.S.: B-spline linear multistep methods and their conitinuous extensions. SIAM J. Numer. Anal. 44(5), 1954–1973 (2006) · Zbl 1128.65057 · doi:10.1137/040614748
[10] Faddeyev L.D.: The inverse problem in the quantum theory of scattering. J. Math. Physics 4(1), 72–104 (1963) · Zbl 0112.45101 · doi:10.1063/1.1703891
[11] Flett, T.M.: Differential Analysis. Cambridge University Press (1980) · Zbl 0442.34002
[12] Golub G.H., Loan C.F.V.: Matrix Computations, second edn. The Johns Hopkins University Press, Baltimore, MD, USA (1989) · Zbl 0733.65016
[13] Graham A.: Kronecker products and matrix calculus with applications. John Wiley & Sons, New York, USA (1981) · Zbl 0497.26005
[14] Jódar L., Cortés J.C.: Rational matrix approximation with a priori error bounds for non-symmetric matrix riccati equations with analytic coefficients. IMA J. Numer. Anal. 18(4), 545–561 (1998) · Zbl 0917.65064 · doi:10.1093/imanum/18.4.545
[15] Jódar L., Cortés J.C., Morera J.L.: Construction and computation of variable coefficient sylvester differential problems. Computers Maths. Appl. 32(8), 41–50 (1996) · Zbl 0864.65046 · doi:10.1016/0898-1221(96)00165-4
[16] Jódar, L., Ponsoda, E.: Continuous numerical solutions and error bounds for matrix differential equations. In: Int. Proc. First Int. Colloq. Num. Anal., pp. 73–88. VSP, Utrecht, The Netherlands (1993) · Zbl 0847.65045
[17] Jódar L., Ponsoda E.: Non-autonomous riccati-type matrix differential equations: Existence interval, construction of continuous numerical solutions and error bounds. IMA J. Numer. Anal. 15(1), 61–74 (1995) · Zbl 0826.65066 · doi:10.1093/imanum/15.1.61
[18] Loscalzo F.R., Talbot T.D.: Spline function approximations for solutions of ordinary differential equations. SIAM J. Numer. Anal. 4(3), 433–445 (1967) · Zbl 0171.36301 · doi:10.1137/0704038
[19] Marzulli P.: Global error estimates for the standard parallel shooting method. J. Comput. Appl. Math. 34, 233–241 (1991) · Zbl 0723.65062 · doi:10.1016/0377-0427(91)90045-L
[20] Micula G., Revnic A.: An implicit numerical spline method for systems for ode’s. Appl. Math. Comput. 111, 121–132 (2000) · Zbl 1023.65068 · doi:10.1016/S0096-3003(98)10111-X
[21] Reid, W.T.: Riccati Differential Equations. Academic Press (1972) · Zbl 0254.34003
[22] Rektorys, K.: The method of discretization in time and partial differential equations. D. Reidel Pub. Co., Dordrecht (1982) · Zbl 0522.65059
[23] Scott, M.: Invariant imbedding and its Applications to Ordinary Differential Equations. Addison-Wesley (1973) · Zbl 0271.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.