×

Numerical solution of matrix differential models using cubic matrix splines. (English) Zbl 1085.65058

Summary: This paper deals with the construction of approximate solution of first-order matrix linear differential equations using matrix cubic splines. An estimation of the approximation error, an algorithm for its implementation and some illustrative examples are included.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34A30 Linear ordinary differential equations and systems
65L70 Error bounds for numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Faddeyev, L. D., The inverse problem in the quantum theory of scattering, J. Math. Physics, 4, 1, 72-104 (1963) · Zbl 0112.45101
[2] Barnett, S., Matrices in Control Theory (1971), Van Nostrand: Van Nostrand Oxford · Zbl 0245.93002
[3] Reid, W. T., Riccati Differential Equations (1972), Academic Press: Academic Press Reinhold · Zbl 0209.11601
[4] LaBudde, R. A., Classical Mechanics of Molecular Collisions, (Report WIS-TCI-414 (1973), University of Wisconsin Theretical Chemistry Inst.)
[5] Scott, M., Invariant imbedding and its Applications to Ordinary Differential Equations (1973), Addison-Wesley · Zbl 0271.34001
[6] Marzulli, P., Global error estimates for the standard parallel shooting method, J. Computat. Appl. Maths., 34, 233-241 (1991) · Zbl 0723.65062
[7] Rektorys, K., The Method of Discretization in Time and Partial Differential Equations (1982), D. Reidel Pub. Co. · Zbl 0522.65059
[8] Boggs, P. T., The solution of nonlinear systems of equations by A-stable integration techniques, SIAM J. Numer. Anal., 8, 4, 767-785 (1971) · Zbl 0209.47002
[9] Graham, A., Kronecker Products and Matrix Calculus with Applications (1981), John Wiley: John Wiley Dordrecht · Zbl 0497.26005
[10] Flett, T. M., Differential Analysis (1980), Cambridge University Press: Cambridge University Press New York · Zbl 0442.34002
[11] Ascher, U. M.; Mattheij, R. M.M.; Russell, R. D., Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations (1988), Pentice Hall · Zbl 0666.65056
[12] Jódar, L.; Ponsoda, E., Non-autonomous Riccati-type matrix differential equations: Existence interval, construction of continuous numerical solutions and error bounds, IMA J. Numer. Anal., 15, 1, 61-74 (1995) · Zbl 0826.65066
[13] Jódar, L.; Cortés, J. C.; Morera, J. L., Construction and computation of variable coefficient Sylvester differential problems, Computers Maths. Applic., 32, 8, 41-50 (1996) · Zbl 0864.65046
[14] Jódar, L.; Cortés, J. C., Rational matrix approximation with a priori error bounds for non-symmetric matrix Riccati Equations with analytic coefficients, IMA J. Numer. Anal., 18, 4, 545-561 (1998) · Zbl 0917.65064
[15] Jódar, L.; Ponsoda, E., Continuous numerical solutions and error bounds for matrix differential equations, (Bainov, D.; Covachev, V., Int. Proc. First Int. Coll. Num. Anal. (1993), VSP. Utrech: VSP. Utrech New Jersey), 73-88 · Zbl 0847.65045
[16] Blanes, S.; Cases, F.; Oteo, J. A.; Ros, J., Magnus and Fer expansion for matrix differential equations: the convergence problem, J. Phys. Appl., 31, 259-268 (1998) · Zbl 0946.34014
[17] Loscalzo, F. R.; Talbot, T. D., Spline function approximations for solutions of ordinary differential equations, SIAM J. Numer. Anal., 4, 3, 433-445 (1967) · Zbl 0171.36301
[18] Al-Said, E. A.; Noor, M. A., Cubic splines method for a system of third-order boundary value problems, Appl. Math. Computation, 142, 195-204 (2003) · Zbl 1022.65082
[19] Micula, Gh.; Revnic, A., An implicit numerical spline method for systems for ODE’S, Appl. Math. Computation, 111, 121-132 (2000) · Zbl 1023.65068
[20] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), Johns Hopkins University Press: Johns Hopkins University Press The Netherlands · Zbl 0865.65009
[21] Defez, E.; Hervás, A.; Law, A.; Villanueva-Oiler, J.; Villanueva, R., Matrix cubic splines for progressive transmission of images, Journal of Mathematical Imaging and Vision, 17, 1, 41-53 (2002) · Zbl 1020.68099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.