×

A fourth-order parabolic equation modeling epitaxial thin film growth. (English) Zbl 1029.35110

Summary: We study the continuum model for epitaxial thin film growth from [T. P. Schulze, R. V. Kohn, Phys. D 132, 520-542 (1999; Zbl 0962.74522)], which is known to simulate experimentally observed dynamics very well. We show existence, uniqueness and regularity of solutions in an appropriate function space, and we characterize the existence of nontrivial equilibria in terms of the size of the underlying domain. In an investigation of asymptotical behavior, we give a weak assumption under which the \(\omega\)-limit set of the dynamical system consists only of steady states. In the one-dimensional setting we can characterize the set of steady states and determine its unique asymptotically stable element. The article closes with some illustrative numerical examples.

MSC:

35K35 Initial-boundary value problems for higher-order parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
74K35 Thin films
76A20 Thin fluid films
35K55 Nonlinear parabolic equations

Citations:

Zbl 0962.74522
Full Text: DOI

References:

[1] Beretta, E.; Bertsch, M.; Dal Passo, R., Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation, Arch. Rational Mech. Anal., 129, 175-200 (1995) · Zbl 0827.35065
[2] Bernis, F., Finite speed of propagation and continuity of the interface for thin viscous flows, Adv. Differential Equations, 1, 337-368 (1996) · Zbl 0846.35058
[3] Bernis, F.; Friedman, A., Higher order nonlinear parabolic equations, J. Differential Equations, 83, 179-206 (1990) · Zbl 0702.35143
[4] J.A. Burns, B.B. King, O. Stein, Computational methods for identification and control of nanoscale materials, ICAM Report 00-03-01, Virginia Tech, 2000; J.A. Burns, B.B. King, O. Stein, Computational methods for identification and control of nanoscale materials, ICAM Report 00-03-01, Virginia Tech, 2000
[5] Carlen, E. A.; Carvalho, M. C.; Orlandi, E., A simple proof of stability of fronts for the Cahn-Hilliard equation, Comm. Math. Phys., 224, 323-340 (2001) · Zbl 1019.35013
[6] Carr, J.; Gurtin, M. E.; Slemrod, M., Structured phase transitions on a finite interval, Arch. Rational Mech. Anal., 86, 317-351 (1984) · Zbl 0564.76075
[7] Das Sarma, S.; Ghaisas, S. V., Solid-on-solid rules and models for nonequilibrium growth in 2+1 dimensions, Phys. Rev. Lett., 69, 3762-3765 (1992)
[8] Deimling, K., Nonlinear Functional Analysis (1985), Springer: Springer Berlin · Zbl 0559.47040
[9] Edwards, S. F.; Wilkinson, D. R., The surface statistics of a granular aggregate, Proc. Roy. Soc. London Ser. A, 381, 17-31 (1982)
[10] Elliot, C. M.; Zheng, S., On the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 96, 339-357 (1986) · Zbl 0624.35048
[11] Friedman, A., Partial Differential Equations (1969), Holt, Rinehart & Winston: Holt, Rinehart & Winston New York · Zbl 0224.35002
[12] Grinfeld, M.; Novick-Cohen, A., Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proc. Roy. Soc. Edinburgh Sect. A, 125, 351-370 (1995) · Zbl 0828.34007
[13] Grinfeld, M.; Novick-Cohen, A., The viscous Cahn-Hilliard equation: Morse decomposition and structure of the global attractor, Trans. Amer. Math. Soc., 351, 2375-2406 (1999) · Zbl 0927.35045
[14] Grossmann, C.; Roos, H.-G., Numerik Partieller Differentialgleichungen (1992), Teubner: Teubner Stuttgart · Zbl 0755.65087
[15] Henry, D., Geometric Theory of Semilinear Parabolic Equations (1981), Springer: Springer Berlin · Zbl 0456.35001
[16] Herring, C., Surface tension as a motivation for sintering, (Kingston, W. E., The Physics of Powder Metallurgy (1951), McGraw-Hill: McGraw-Hill New York)
[17] Kielhöfer, H., Pattern formation of the stationary Cahn-Hilliard model, Proc. Roy. Soc. Edinburgh Sect. A, 127, 1219-1243 (1997) · Zbl 0886.35021
[18] Lunardi, A.; Sinestrari, E.; von Wahl, W., A semigroup approach to the time dependent parabolic initial-boundary value problem, J. Differential Equations, 5, 1275-1306 (1992) · Zbl 0758.34048
[19] Maier-Paape, S.; Miller, U., Path-following the equilibria of the Cahn-Hilliard equation on the square, Comput. Visual. Sci., 5, 115-138 (2002) · Zbl 1029.65138
[20] Mischaikow, K., Global asymptotic dynamics of gradient-like bistable equations, SIAM J. Math. Anal., 26, 1199-1224 (1995) · Zbl 0841.35014
[21] Mullins, W. W., Theory of thermal grooving, J. Appl. Phys., 28, 333-339 (1957)
[22] Nazarov, S. A.; Plamenevsky, B. A., Elliptic Problems in Domains with Piecewise Smooth Boundaries (1994), de Gruyter: de Gruyter Berlin · Zbl 0806.35001
[23] Novick-Cohen, A., On Cahn-Hilliard type equations, Nonlinear Anal., 15, 797-814 (1990) · Zbl 0731.35057
[24] Novick-Cohen, A.; Peletier, L. A., Steady states of the one-dimensional Cahn-Hilliard equation, Proc. Roy. Soc. Edinburgh Sect. A, 123, 1071-1098 (1993) · Zbl 0818.35127
[25] Ortiz, M.; Repetto, E. A.; Si, H., A continuum model of kinetic roughening and coarsening in thin films, J. Mech. Phys. Solids, 47, 697-730 (1999) · Zbl 0962.76009
[26] Schulze, T. P.; Kohn, R. V., A geometric model for coarsening during spiral-mode growth of thin films, Phys. D, 132, 520-542 (1999) · Zbl 0962.74522
[27] O. Stein, On epitaxial thin film growth and control of nanoscale materials, ICAM Report 00-04-01, Virginia Tech, 2000; O. Stein, On epitaxial thin film growth and control of nanoscale materials, ICAM Report 00-04-01, Virginia Tech, 2000
[28] O. Stein, The role of the transition function in a continuum model for kinetic roughening and coarsening in thin films, ICAM Report 99-07-02, Virginia Tech, 1999; O. Stein, The role of the transition function in a continuum model for kinetic roughening and coarsening in thin films, ICAM Report 99-07-02, Virginia Tech, 1999
[29] Taylor, A. E., Introduction to Functional Analysis (1958), Wiley · Zbl 0081.10202
[30] Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis. Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and Its Applications, 2 (1977), North-Holland: North-Holland Amsterdam · Zbl 0383.35057
[31] Triebel, H., Interpolation Theory, Function Spaces, Differential Operators (1995), Barth: Barth Heidelberg · Zbl 0830.46028
[32] M. Winkler, Some results on degenerate parabolic equations not in divergence form, Ph.D. Thesis, Aachen, 2000; M. Winkler, Some results on degenerate parabolic equations not in divergence form, Ph.D. Thesis, Aachen, 2000
[33] M. Winkler, Remarks on a finite element approximation for a fourth order nonlinear parabolic equation, Preprint, Aachen, 2000; M. Winkler, Remarks on a finite element approximation for a fourth order nonlinear parabolic equation, Preprint, Aachen, 2000
[34] Zangwill, A., Some causes and a consequence of epitaxial roughening, J. Crystal Growth, 163, 8-21 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.