×

Density and positive mass theorems for initial data sets with boundary. (English) Zbl 1510.83017

Summary: We prove a harmonic asymptotics density theorem for asymptotically flat initial data sets with compact boundary that satisfy the dominant energy condition. We use this to settle the spacetime positive mass theorem, with rigidity, for initial data sets with apparent horizon boundary in dimensions less than 8 without a spin assumption.

MSC:

83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
11R45 Density theorems
58J47 Propagation of singularities; initial value problems on manifolds
14B25 Local structure of morphisms in algebraic geometry: étale, flat, etc.
47A10 Spectrum, resolvent
83E15 Kaluza-Klein and other higher-dimensional theories

References:

[1] Andersson, L.; Chruściel, PT, Solutions of the constraint equations in general relativity satisfying “hyperboloidal boundary conditions”, Dissertationes Math. (Rozprawy Mat.), 355, 100 (1996) · Zbl 0873.35101
[2] Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Commun. Pure Appl. Math., 17, 35-92 (1964) · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[3] Andersson, L.; Metzger, J., The area of horizons and the trapped region, Commun. Math. Phys., 290, 3, 941-972 (2009) · Zbl 1205.53071 · doi:10.1007/s00220-008-0723-y
[4] An, Z.: On mass-minimizing extensions of Bartnik boundary data. Commun. Anal. Geom. (2022) To appear
[5] Bartnik, R., The mass of an asymptotically flat manifold, Commun. Pure Appl. Math., 39, 5, 661-693 (1986) · Zbl 0598.53045 · doi:10.1002/cpa.3160390505
[6] Beig, R.; Chruściel, PT, Killing vectors in asymptotically flat space-times. I Asymptotically translational Killing vectors and the rigid positive energy theorem, J. Math. Phys., 37, 4, 1939-1961 (1996) · Zbl 0864.53063 · doi:10.1063/1.531497
[7] Bartnik, R., Chruściel, P.T.: Boundary value problems for Dirac-type equations, with applications. arXiv:math/0307278, (2003) · Zbl 1464.58009
[8] Bray, HL; Lee, DA, On the Riemannian Penrose inequality in dimensions less than eight, Duke Math. J., 148, 1, 81-106 (2009) · Zbl 1168.53016 · doi:10.1215/00127094-2009-020
[9] Brezis, H., Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext (2011), New York: Springer, New York · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7
[10] Carlotto, A.: Rigidity of stable minimal hypersurfaces in asymptotically flat spaces. Calc. Var. Partial Differ. Equ. 55(3):Art. 54, 20, (2016) · Zbl 1343.53010
[11] Chruściel, P.T., Delay, E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mém. Soc. Math. Fr. (N.S.), (94):vi+103 (2003) · Zbl 1058.83007
[12] Corvino, J., Huang, L.-H.: Localized deformation for initial data sets with the dominant energy condition. Calc. Var. Partial Differ. Equ. 59(1):Paper No. 42, 43, (2020) · Zbl 1443.53021
[13] Chruściel, PT; Mazzeo, R., On “many-black-hole” vacuum spacetimes, Class. Quantum Gravity, 20, 4, 729-754 (2003) · Zbl 1033.83021 · doi:10.1088/0264-9381/20/4/308
[14] Chruściel, PT; Maerten, D., Killing vectors in asymptotically flat space-times. II. Asymptotically translational Killing vectors and the rigid positive energy theorem in higher dimensions, J. Math. Phys., 47, 2, 022502 (2006) · Zbl 1111.83014 · doi:10.1063/1.2167809
[15] Corvino, J., Pollack, D.: Scalar curvature and the Einstein constraint equations. In: Surveys in Geometric Analysis and Relativity, volume 20 of Adv. Lect. Math. (ALM), pp. 145-188. Int. Press, Somerville, MA (2011) · Zbl 1268.53048
[16] Corvino, J.; Schoen, RM, On the asymptotics for the vacuum Einstein constraint equations, J. Differ. Geom., 73, 2, 185-217 (2006) · Zbl 1122.58016 · doi:10.4310/jdg/1146169910
[17] Carlotto, A.; Schoen, R., Localizing solutions of the Einstein constraint equations, Invent. Math., 205, 3, 559-615 (2016) · Zbl 1353.83010 · doi:10.1007/s00222-015-0642-4
[18] DeTurck, DM; Kazdan, JL, Some regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup., 14, 3, 249-260 (1981) · Zbl 0486.53014 · doi:10.24033/asens.1405
[19] Duzaar, F.; Steffen, K., \( \lambda\) minimizing currents, Manuscripta Math., 80, 4, 403-447 (1993) · Zbl 0819.53034 · doi:10.1007/BF03026561
[20] Eichmair, M.; Huang, L-H; Lee, DA; Schoen, R., The spacetime positive mass theorem in dimensions less than eight, J. Eur. Math. Soc. (JEMS), 18, 1, 83-121 (2016) · Zbl 1341.53067 · doi:10.4171/JEMS/584
[21] Eichmair, M., The Plateau problem for marginally outer trapped surfaces, J. Differ. Geom., 83, 3, 551-583 (2009) · Zbl 1197.53075 · doi:10.4310/jdg/1264601035
[22] Eichmair, M., The Jang equation reduction of the spacetime positive energy theorem in dimensions less than eight, Commun. Math. Phys., 319, 575-593 (2013) · Zbl 1269.53070 · doi:10.1007/s00220-013-1700-7
[23] Fischer, AE; Marsden, JE, Linearization stability of the Einstein equations, Bull. Am. Math. Soc., 79, 997-1003 (1973) · Zbl 0274.58003 · doi:10.1090/S0002-9904-1973-13299-9
[24] Gibbons, GW; Hawking, SW; Horowitz, GT; Perry, MJ, Positive mass theorems for black holes, Commun. Math. Phys., 88, 3, 295-308 (1983) · doi:10.1007/BF01213209
[25] Gromov, M.; Lawson, HB Jr, Spin and scalar curvature in the presence of a fundamental group. I, Ann. Math., 111, 2, 209-230 (1980) · Zbl 0445.53025 · doi:10.2307/1971198
[26] Galloway, G.J., Lee, D.A.: A note on the positive mass theorem with boundary. Lett. Math. Phys. 111(4):Paper No. 111 (2021) · Zbl 1476.83083
[27] Grisvard, P.: Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1985) · Zbl 0695.35060
[28] Herzlich, M., The positive mass theorem for black holes revisited, J. Geom. Phys., 26, 1-2, 97-111 (1998) · Zbl 0947.83022 · doi:10.1016/S0393-0440(97)00040-5
[29] Hintz, P., Black hole gluing in de Sitter space, Commun. Partial Differ. Equ., 46, 7, 1280-1318 (2021) · Zbl 1479.83010 · doi:10.1080/03605302.2020.1871368
[30] Hirsch, S., Kazaras, D., Khuri, M.: Spacetime harmonic functions and the mass of 3-dimensional asymptotically flat initial data for the Einstein equations. J. Differ. Geom. (2021) To appear
[31] Huang, L.-H., Lee, D.A.: Bartnik mass minimizing initial data sets and improvability of the dominant energy scalar. J. Differ. Geom. (2020) To appear
[32] Huang, L-H; Lee, DA, Equality in the spacetime positive mass theorem, Commun. Math. Phys., 376, 3, 2379-2407 (2020) · Zbl 1440.53078 · doi:10.1007/s00220-019-03619-w
[33] Huang, L-H; Martin, D.; Miao, P., Static potentials and area minimizing hypersurfaces, Proc. Am. Math. Soc., 146, 6, 2647-2661 (2018) · Zbl 1387.53045 · doi:10.1090/proc/13936
[34] Hirsch, S., Zhang, Y.: The case of equality for the spacetime positive mass theorem. arXiv:2203.01984 (2022)
[35] Jang, PS, On the positivity of energy in general relativity, J. Math. Phys., 19, 5, 1152-1155 (1978) · doi:10.1063/1.523776
[36] Ernst, C.: Kuwert. Universität Bonn, Der Minimalflächenbeweis des Positive Energy Theorem. Diplomarbeit (1990)
[37] Lee, D.A.: Geometric Relativity. Graduate Studies in Mathematics, Vol. 201. AMS (2019) · Zbl 07124831
[38] Lee, D.A., Lesourd, M., Unger, R.: Density and positive mass theorems for incomplete manifolds. arXiv:2201.01328, (2022)
[39] Lockhart, RB; McOwen, RC, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12, 3, 409-447 (1985) · Zbl 0615.58048
[40] Lohkamp, J., Scalar curvature and hammocks, Math. Ann., 313, 3, 385-407 (1999) · Zbl 0943.53024 · doi:10.1007/s002080050266
[41] Lohkamp, J.: The higher dimensional positive mass theorem I. arXiv:math/0608795, (2016)
[42] Lohkamp, J.: The higher dimensional positive mass theorem II. arXiv:1612.07505, (2017)
[43] Lee, JM; Parker, TH, The Yamabe problem, Bull. Am. Math. Soc., 17, 1, 37-91 (1987) · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[44] Lesourd, M., Unger, R., Yau, S.-T.: Positive scalar curvature on noncompact manifolds and the Liouville theorem. arXiv:2009.12618, (2020)
[45] Lesourd, M., Unger, R., Yau, S.-T.: The positive mass theorem with arbitrary ends. J. Differ. Geom. (2021) To appear
[46] Maxwell, D., Solutions of the Einstein constraint equations with apparent horizon boundaries, Commun. Math. Phys., 253, 3, 561-583 (2005) · Zbl 1065.83011 · doi:10.1007/s00220-004-1237-x
[47] Metzger, J., Blowup of Jang’s equation at outermost marginally trapped surfaces, Commun. Math. Phys., 294, 1, 61-72 (2010) · Zbl 1246.53100 · doi:10.1007/s00220-009-0934-x
[48] Morrey, C.B. Jr.: Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer-Verlag New York, Inc., New York, (1966) · Zbl 0142.38701
[49] Schoen, R.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: Topics in Calculus of Variations (Montecatini Terme, 1987), volume 1365 of Lecture Notes in Math., pp. 120-154. Springer, Berlin (1989) · Zbl 0702.49038
[50] Schechter, M.: Principles of Functional Analysis, volume 36 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, (2002) · Zbl 0211.14501
[51] Schoen, R.; Yau, S-T, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., 65, 1, 45-76 (1979) · Zbl 0405.53045 · doi:10.1007/BF01940959
[52] Schoen, R.; Yau, S-T, On the structure of manifolds with positive scalar curvature, Manuscripta Math., 28, 1-3, 159-183 (1979) · Zbl 0423.53032 · doi:10.1007/BF01647970
[53] Schoen, R.; Yau, S-T, The energy and the linear momentum of space-times in general relativity, Commun. Math. Phys., 79, 1, 47-51 (1981) · Zbl 0934.83031 · doi:10.1007/BF01208285
[54] Schoen, R.; Yau, S-T, Proof of the positive mass theorem. II, Commun. Math. Phys., 79, 2, 231-260 (1981) · Zbl 0494.53028 · doi:10.1007/BF01942062
[55] Schoen, R., Yau, S.-T..: Positive scalar curvature and minimal hypersurface singularities. In: Cao, H.-D., Yau, S.-T. (eds.) Differential Geometry. Calabi-Yau theory, and general relativity (Part 2), volume 24 of Surveys in Differential Geometry, pp. 441-480. International Press, Somerville, MA (2019) · Zbl 07817751
[56] Witten, E., A new proof of the positive energy theorem, Commun. Math. Phys., 80, 3, 381-402 (1981) · Zbl 1051.83532 · doi:10.1007/BF01208277
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.