Skip to main content
Log in

Density and Positive Mass Theorems for Initial Data Sets with Boundary

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a harmonic asymptotics density theorem for asymptotically flat initial data sets with compact boundary that satisfy the dominant energy condition. We use this to settle the spacetime positive mass theorem, with rigidity, for initial data sets with apparent horizon boundary in dimensions less than 8 without a spin assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that this discussion only appears in the arXiv version of the paper.

  2. More specifically, this Kerr initial data comes from an element of the “reference family” for Kerr, as described in [CD03].

  3. A bounded linear operator \(T:X\rightarrow Y\) is semi-Fredholm if \(\dim \ker T<\infty \) and T(X) is closed in Y.

  4. In this theorem and throughout the paper, whenever we refer to Hölder spaces on M, we mean that they are regular up to the boundary.

  5. In the case when \({\text {tr}}_g k\) has a good sign, see [Met10, Theorem 3.4].

  6. The graphical components tend to \(\pm \infty \) on approach to these cylinders. We say that the Jang graph “blows up" over the MOTS or MITS.

  7. The \(n=3\) claim follows from observing that the only term appearing in \({\text {tr}}_{g_j}k_j\) (when written in terms of g, k, \(\lambda \), and the deformations uYhw) that is not directly controlled is the \({\text {tr}}_g k\) term, which is controlled by assumption. See [Eic13, Proposition 15].

References

  1. Andersson, L., Chruściel, P.T.: Solutions of the constraint equations in general relativity satisfying “hyperboloidal boundary conditions’’. Dissertationes Math. (Rozprawy Mat.) 355, 100 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  Google Scholar 

  3. Andersson, L., Metzger, J.: The area of horizons and the trapped region. Commun. Math. Phys. 290(3), 941–972 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. An, Z.: On mass-minimizing extensions of Bartnik boundary data. Commun. Anal. Geom. (2022) To appear

  5. Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39(5), 661–693 (1986)

    Article  MathSciNet  Google Scholar 

  6. Beig, R., Chruściel, P.T.: Killing vectors in asymptotically flat space–times. I Asymptotically translational Killing vectors and the rigid positive energy theorem. J. Math. Phys. 37(4), 1939–1961 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bartnik, R., Chruściel, P.T.: Boundary value problems for Dirac-type equations, with applications. arXiv:math/0307278, (2003)

  8. Bray, H.L., Lee, D.A.: On the Riemannian Penrose inequality in dimensions less than eight. Duke Math. J. 148(1), 81–106 (2009)

    Article  MathSciNet  Google Scholar 

  9. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    Book  Google Scholar 

  10. Carlotto, A.: Rigidity of stable minimal hypersurfaces in asymptotically flat spaces. Calc. Var. Partial Differ. Equ. 55(3):Art. 54, 20, (2016)

  11. Chruściel, P.T., Delay, E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mém. Soc. Math. Fr. (N.S.), (94):vi+103 (2003)

  12. Corvino, J., Huang, L.-H.: Localized deformation for initial data sets with the dominant energy condition. Calc. Var. Partial Differ. Equ. 59(1):Paper No. 42, 43, (2020)

  13. Chruściel, P.T., Mazzeo, R.: On “many-black-hole’’ vacuum spacetimes. Class. Quantum Gravity 20(4), 729–754 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chruściel, P.T., Maerten, D.: Killing vectors in asymptotically flat space–times. II. Asymptotically translational Killing vectors and the rigid positive energy theorem in higher dimensions. J. Math. Phys. 47(2), 022502 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. Corvino, J., Pollack, D.: Scalar curvature and the Einstein constraint equations. In: Surveys in Geometric Analysis and Relativity, volume 20 of Adv. Lect. Math. (ALM), pp. 145–188. Int. Press, Somerville, MA (2011)

  16. Corvino, J., Schoen, R.M.: On the asymptotics for the vacuum Einstein constraint equations. J. Differ. Geom. 73(2), 185–217 (2006)

    Article  MathSciNet  Google Scholar 

  17. Carlotto, A., Schoen, R.: Localizing solutions of the Einstein constraint equations. Invent. Math. 205(3), 559–615 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. DeTurck, D.M., Kazdan, J.L.: Some regularity theorems in Riemannian geometry. Ann. Sci. École Norm. Sup. 14(3), 249–260 (1981)

    Article  MathSciNet  Google Scholar 

  19. Duzaar, F., Steffen, K.: \(\lambda \) minimizing currents. Manuscripta Math. 80(4), 403–447 (1993)

    Article  MathSciNet  Google Scholar 

  20. Eichmair, M., Huang, L.-H., Lee, D.A., Schoen, R.: The spacetime positive mass theorem in dimensions less than eight. J. Eur. Math. Soc. (JEMS) 18(1), 83–121 (2016)

    Article  MathSciNet  Google Scholar 

  21. Eichmair, M.: The Plateau problem for marginally outer trapped surfaces. J. Differ. Geom. 83(3), 551–583 (2009)

    Article  MathSciNet  Google Scholar 

  22. Eichmair, M.: The Jang equation reduction of the spacetime positive energy theorem in dimensions less than eight. Commun. Math. Phys. 319, 575–593 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Fischer, A.E., Marsden, J.E.: Linearization stability of the Einstein equations. Bull. Am. Math. Soc. 79, 997–1003 (1973)

    Article  MathSciNet  Google Scholar 

  24. Gibbons, G.W., Hawking, S.W., Horowitz, G.T., Perry, M.J.: Positive mass theorems for black holes. Commun. Math. Phys. 88(3), 295–308 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  25. Gromov, M., Lawson, H.B., Jr.: Spin and scalar curvature in the presence of a fundamental group. I. Ann. Math. 111(2), 209–230 (1980)

    Article  MathSciNet  Google Scholar 

  26. Galloway, G.J., Lee, D.A.: A note on the positive mass theorem with boundary. Lett. Math. Phys. 111(4):Paper No. 111 (2021)

  27. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1985)

  28. Herzlich, M.: The positive mass theorem for black holes revisited. J. Geom. Phys. 26(1–2), 97–111 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  29. Hintz, P.: Black hole gluing in de Sitter space. Commun. Partial Differ. Equ. 46(7), 1280–1318 (2021)

    Article  MathSciNet  Google Scholar 

  30. Hirsch, S., Kazaras, D., Khuri, M.: Spacetime harmonic functions and the mass of 3-dimensional asymptotically flat initial data for the Einstein equations. J. Differ. Geom. (2021) To appear

  31. Huang, L.-H., Lee, D.A.: Bartnik mass minimizing initial data sets and improvability of the dominant energy scalar. J. Differ. Geom. (2020) To appear

  32. Huang, L.-H., Lee, D.A.: Equality in the spacetime positive mass theorem. Commun. Math. Phys. 376(3), 2379–2407 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  33. Huang, L.-H., Martin, D., Miao, P.: Static potentials and area minimizing hypersurfaces. Proc. Am. Math. Soc. 146(6), 2647–2661 (2018)

    Article  MathSciNet  Google Scholar 

  34. Hirsch, S., Zhang, Y.: The case of equality for the spacetime positive mass theorem. arXiv:2203.01984 (2022)

  35. Jang, P.S.: On the positivity of energy in general relativity. J. Math. Phys. 19(5), 1152–1155 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  36. Ernst, C.: Kuwert. Universität Bonn, Der Minimalflächenbeweis des Positive Energy Theorem. Diplomarbeit (1990)

  37. Lee, D.A.: Geometric Relativity. Graduate Studies in Mathematics, Vol. 201. AMS (2019)

  38. Lee, D.A., Lesourd, M., Unger, R.: Density and positive mass theorems for incomplete manifolds. arXiv:2201.01328, (2022)

  39. Lockhart, R.B., McOwen, R.C.: Elliptic differential operators on noncompact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12(3), 409–447 (1985)

    MathSciNet  MATH  Google Scholar 

  40. Lohkamp, J.: Scalar curvature and hammocks. Math. Ann. 313(3), 385–407 (1999)

    Article  MathSciNet  Google Scholar 

  41. Lohkamp, J.: The higher dimensional positive mass theorem I. arXiv:math/0608795, (2016)

  42. Lohkamp, J.: The higher dimensional positive mass theorem II. arXiv:1612.07505, (2017)

  43. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. 17(1), 37–91 (1987)

    Article  MathSciNet  Google Scholar 

  44. Lesourd, M., Unger, R., Yau, S.-T.: Positive scalar curvature on noncompact manifolds and the Liouville theorem. arXiv:2009.12618, (2020)

  45. Lesourd, M., Unger, R., Yau, S.-T.: The positive mass theorem with arbitrary ends. J. Differ. Geom. (2021) To appear

  46. Maxwell, D.: Solutions of the Einstein constraint equations with apparent horizon boundaries. Commun. Math. Phys. 253(3), 561–583 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  47. Metzger, J.: Blowup of Jang’s equation at outermost marginally trapped surfaces. Commun. Math. Phys. 294(1), 61–72 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  48. Morrey, C.B. Jr.: Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer-Verlag New York, Inc., New York, (1966)

  49. Schoen, R.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: Topics in Calculus of Variations (Montecatini Terme, 1987), volume 1365 of Lecture Notes in Math., pp. 120–154. Springer, Berlin (1989)

  50. Schechter, M.: Principles of Functional Analysis, volume 36 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, (2002)

  51. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  52. Schoen, R., Yau, S.-T.: On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28(1–3), 159–183 (1979)

    Article  MathSciNet  Google Scholar 

  53. Schoen, R., Yau, S.-T.: The energy and the linear momentum of space-times in general relativity. Commun. Math. Phys. 79(1), 47–51 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  54. Schoen, R., Yau, S.-T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79(2), 231–260 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  55. Schoen, R., Yau, S.-T..: Positive scalar curvature and minimal hypersurface singularities. In: Cao, H.-D., Yau, S.-T. (eds.) Differential Geometry. Calabi-Yau theory, and general relativity (Part 2), volume 24 of Surveys in Differential Geometry, pp. 441–480. International Press, Somerville, MA (2019)

  56. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80(3), 381–402 (1981)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Lan-Hsuan Huang for useful discussions at the start of this project, Greg Galloway for his interest in the problem, and Piotr Chruściel for various helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Lesourd.

Additional information

Communicated by P. Chrusciel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Second Differential of the Constraint-Null Expansion System

Appendix A. Second Differential of the Constraint-Null Expansion System

In this paper, we utilize the inverse function theorem to perturb families of initial data sets. To this end, we need to control the constants appearing in the “quantitative" version of the inverse function theorem [Lee19, Theorem A.43].

Lemma A.1

Let \((M^n,g, \pi )\) be an asymptotically flat data set as in Sect. 2.1. Let \(K_1\subset T_{(1,0)}{\mathcal {C}}\) be a closed subspace and \(K_2\subset T_{(g,\pi )}{\mathcal {D}}\) be a finite-dimensional subspace. There exists a constant \(C_0\) such that for any \(r_0>0\) sufficiently small, the following is true.

Let \((\gamma ,\tau )\in {\mathcal {D}}\) with \(\Vert (\gamma ,\tau )-(g,\pi )\Vert _{\mathcal {D}}\le r_0\) and define

$$\begin{aligned}\hat{{\mathcal {P}}}_{(\gamma ,\tau )}:[(1,0)+K_1]\times K_2&\rightarrow {\mathcal {L}}\times W^{1-\frac{1}{p},p}(\partial M)\\ ((u,Y),(h,w))&\mapsto (\Phi ,\Theta )[\Psi _{(\gamma ,\tau )}(u,Y)+(h,w)].\end{aligned}$$

Then

$$\begin{aligned} \Vert D\hat{{\mathcal {P}}}_{(\gamma ,\tau )}|_{((1,0),(0,0))}-D\hat{{\mathcal {P}}}_{(g,\pi )}|_{((1,0),(0,0))}\Vert _{L(K_1\times K_2,{\mathcal {L}}\times W^{1-\frac{1}{p},p})}\le C_0r_0\end{aligned}$$
(A.1)

and

$$\begin{aligned} \Vert D^2 \hat{{\mathcal {P}}}_{(\gamma ,\tau )}|_{((u,Y),(h,w))}\Vert _{L_2(K_1\times K_2,{\mathcal {L}}\times W^{1-\frac{1}{p},p})}\le C_0 \end{aligned}$$
(A.2)

for any \(((u,Y),(h,w))\in B_{r_0}((1,0),(0,0))\).

This lemma also holds if in the definition of \(\hat{{\mathcal {P}}}\), we use the modified constraint operator \(\overline{\Phi }_{(g,\pi )}\) instead of \(\Phi \).

Here \(L_2(X,Y)\) refers to the space of bounded multilinear maps \(X\times X\rightarrow Y\). Note that a Lipschitz bound for \(D\hat{{\mathcal {P}}}_{(\gamma ,\tau )}\) follows from the Hessian bound by the mean value theorem in Banach spaces. The proof proceeds with a computation of \(D\Phi ,D^2\Phi ,D\Theta \), and \(D^2\Theta \).

Lemma A.2

The first derivative (linearization) of the constraint operator is given by

$$\begin{aligned} D\Phi |_{(g,\pi )}(h,w)&=\bigg (-\Delta _g({\text {tr}}_g h)+{\text {div}}_g({\text {div}}_g h)-\langle \mathrm {Ric}_g,h\rangle _g+\tfrac{2}{n-1}({\text {tr}}_g\pi )\left( \pi ^{ij}h_{ij}+{\text {tr}}_g w\right) \nonumber \\&\qquad - 2g_{kl}\pi ^{ik}\pi ^{jl}h_{ij}-2\langle \pi ,w\rangle _g,\nonumber \\&\qquad ({\text {div}}_g w)^i-\tfrac{1}{2} g^{ij}\pi ^{kl}\nabla _j h_{kl}+g^{ij}\pi ^{kl}\nabla _ kh_{jl}+\tfrac{1}{2} \pi ^{ij}\nabla _j ({\text {tr}}_g h)\bigg ) \end{aligned}$$
(A.3)

Schematically, the second derivative is given by

$$\begin{aligned} D^2\Phi |_{(g,\pi )}((h_1,w_1),(h_2,w_2))&=\bigg (\sum _{0\le i_1+i_2\le 2}\nabla ^{i_1}h_1*\nabla ^{i_2}h_2+\mathrm {Riem}* h_1 * h_2\nonumber \\&\qquad +\pi *\pi *h_1*h_2+w_1*w_2+\pi *h_1*w_2+\pi *h_2*w_1,\nonumber \\&\qquad w_1*\nabla h_2+w_2*\nabla h_1+ \pi * h_1*\nabla h_2+\pi * \nabla h_1*h_2\bigg ). \end{aligned}$$
(A.4)

Here we use the usual schematic notation where \(A*B\) denotes linear combinations and contractions of the components of A and B with respect to the metric g.

The schematic notation misses factors of g and \(g^{-1}\) but these are pointwise bounded by Morrey’s inequality. In the following calculation, we use the shorthand \(\delta _g F=DF|_{g}(h)\).

Proof

The formula for \(D\Phi \) is well known in the literature [FM73]. It depends on the linearization of the scalar curvature, which can be found in [Lee19], for instance. To obtain the formula for \(D^2\Phi \), we simply differentiate (A.3), making note of the following rules:

  • \(\delta _g \nabla T=\nabla h_2*T + \nabla \delta _g T\) for any tensor T, and

  • contractions produce terms of \(h_2\) \(*\) what was being contracted.

Finally, we also note that the variation of the Ricci tensor is given by

$$\begin{aligned}-2\delta _g R_{ij}=\Delta _Lh_{2\,ij}+\nabla _i\nabla _j {\text {tr}}_g h_2-\nabla _i({\text {div}}_g h_2)_j-\nabla _j({\text {div}}_g h_2)_i,\end{aligned}$$

where \(\Delta _L\) is the Lichnerowicz Laplacian. In our schematic notation, this becomes

$$\begin{aligned}\delta _g \mathrm {Ric}=\nabla ^2h_2+\mathrm {Riem}* h_2.\end{aligned}$$

The variation in \(\pi \) is much more straightforward and (A.4) is easily obtained along these lines. \(\square \)

Lemma A.3

The first derivative of the boundary null expansion is given by

$$\begin{aligned}&D\Theta |_{(g,\pi )}(h,w)=\tfrac{1}{2} {\text {tr}}_{\partial M}(\nabla _\nu h) -{\text {div}}_{\partial M} \omega - \tfrac{1}{2} h(\nu ,\nu )H\nonumber \\&\quad -h(\nu ,\nu )\pi (\nu ^\flat ,\nu ^\flat )-w(\nu ^\flat ,\nu ^\flat ), \end{aligned}$$
(A.5)

where \(\omega _i=h_{ij}\nu ^j-h(\nu ,\nu )\nu _i\) and \(\nu ^\flat \) denotes the 1-form dual to \(\nu \). Schematically, the second derivative is given by

$$\begin{aligned}&D^2\Theta |_{(g,\pi )}((h_1,w_1),(h_2,w_2))=\sum _{0\le i_1+i_2\le 1}\nabla ^{i_1}h_1*\nabla ^{i_2}h_2\nonumber \\&\quad +h_1*w_2+h_2*w_1+w_1*w_2, \end{aligned}$$
(A.6)

where schematic notation here is omitting terms like \(\nu \) and H.

Proof

We first compute the linearization of the normal. Varying \(g(\nu ,\nu )=1\) gives

$$\begin{aligned}h(\nu ,\nu )+2g(\nu ,\delta _g\nu )=0,\end{aligned}$$

while varying \(g(X,\nu )=0\) for \(X\in T\Sigma \) gives

$$\begin{aligned}h(X,\nu )+g(X,\delta _g\nu )=0.\end{aligned}$$

It follows that

$$\begin{aligned} \delta _g \nu ^i=-h^{ij}\nu _j+\tfrac{1}{2} h(\nu ,\nu )\nu ^i. \end{aligned}$$
(A.7)

Secondly, we compute the linearization of the second fundamental form. For X and Y tangent to \(\Sigma \), we have

$$\begin{aligned}A(X,Y)=-g(\nu ,\nabla _X Y)=-g_{ij} \nu ^i X^k \nabla _k Y^j.\end{aligned}$$

Taking the variation, we have

$$\begin{aligned} \delta _g A(X,Y)&=-h_{ij}\nu ^i X^k\nabla _k Y^j-g_{ij}\left( -h^{il}\nu _l+\tfrac{1}{2} h(\nu ,\nu )\nu ^i\right) X^k\nabla _k Y^j-g_{ij}\nu ^i X^k\delta _g(\nabla _kY^j)\\&= \tfrac{1}{2} h(\nu ,\nu )\left( -g_{ij}\nu ^i X^k\nabla _k Y^j\right) -g_{ij}\nu ^i X^k\delta _g(\nabla _kY^j)\\&=\tfrac{1}{2} h(\nu ,\nu )A(X,Y)-\tfrac{1}{2} g_{ij}\nu ^i g^{jm} \left( \nabla _k h_{lm} +\nabla _l h_{km}-\nabla _m h_{kl}\right) X^k Y^l\\&=\tfrac{1}{2}\left( h(\nu ,\nu )A_{kl}-\nu ^m\nabla _k h_{lm}-\nu ^m\nabla _l h_{km}+\nu ^m\nabla _m h_{kl}\right) X^kY^l. \end{aligned}$$

Now

$$\begin{aligned}\nu ^m\nabla _k h_{lm}=\nabla _k \omega _l +h(\nu ,\nu )A_{kl} - h_{ln}A_k{}^n,\end{aligned}$$

so that finally

$$\begin{aligned} \delta _g A(X,Y)= \tfrac{1}{2}(\nabla _\nu h_{ij}-\nabla ^{\partial M}_i\omega _j -\nabla _j^{\partial M}\omega _i+h_{ik}A_j{}^k +h_{jk}A_i{}^k - h(\nu ,\nu )A_{ij})X^iY^j.\nonumber \\ \end{aligned}$$
(A.8)

The mean curvature of the boundary is given by

$$\begin{aligned}H={\text {tr}}_{\partial M}A=(g^{ij}-\nu ^i\nu ^j)A_{ij},\end{aligned}$$

so taking the variation and using (A.8) yields

$$\begin{aligned} \delta _g H=\tfrac{1}{2} {\text {tr}}_{\partial M}(\nabla _\nu h) -{\text {div}}_{\partial M} \omega - \tfrac{1}{2} h(\nu ,\nu )H.\end{aligned}$$
(A.9)

The formula for \(D\Theta \) follows easily, where also note that

$$\begin{aligned}\delta _g\nu ^\flat = \tfrac{1}{2} h(\nu ,\nu )\nu ^\flat .\end{aligned}$$

The schematic computation for \(D^2\Theta \) also follows easily using the rules establised in the proof of Lemma A.2. \(\square \)

From these formulas, we deduce:

Lemma A.4

There exists a constant \(C_0\) such that for any sufficiently small \(r_0>0\) the following is true. If \((\gamma ,\tau )\in {\mathcal {D}}\) satisfies \(\Vert (\gamma ,\tau )-(g,\pi )\Vert _{\mathcal {D}}\le r_0\), then

$$\begin{aligned} \Vert D(\Phi ,\Theta )|_{(\gamma ,\tau )}-D(\Phi ,\Theta )|_{(g,\pi )}\Vert \le C_0r_0 \end{aligned}$$
(A.10)

and

$$\begin{aligned} \Vert D^2(\Phi ,\Theta )|_{(g,\pi )}\Vert \le C_0. \end{aligned}$$
(A.11)

Proof

We first remark that the constants appearing in the Sobolev, Morrey, and trace inequalities associated to the metric \(\gamma \) can be bounded in terms of \(r_0\). The first estimate (A.10) can be read off from the explicit formulas (A.3) and (A.5). For example, consider

$$\begin{aligned}g^{ij}\partial _i\partial _j (g^{kl}h_{kl})-\gamma ^{ij}\partial _i\partial _j(\gamma ^{kl}h_{kl}).\end{aligned}$$

We rewrite this as

$$\begin{aligned}(g^{ij}-\gamma ^{ij})\partial _i\partial _j(\gamma ^{kl}h_{kl})+g^{ij}\partial _i\partial _j((g^{kl}-\gamma ^{kl})h_{kl})\end{aligned}$$

and from this it is not hard to see that the \(L^p_{-q}\) norm can be estimated by \(\lesssim r_0 \Vert h\Vert _{W^{2,p}_{-q}}\).

To prove the estimate (A.11), we examine the bilinear structure of the schematic formulas (A.4) and (A.6). For \(D^2\Phi \), we put the highest number of derivatives in \(L^p_{-q}\) and the lowest number of derivatives in \(L^\infty \) using Morrey’s inequality. Special care must be taken with the \(\mathrm {Riem}*h_1*h_2\) term, as the curvature is not assumed to be pointwise bounded. However, it is in \(L^p_{-q}\), so we just put \(h_1\) and \(h_2\) in \(L^\infty \). Altogether, we obtain the estimate

$$\begin{aligned}\Vert D^2\Phi |_{(\gamma ,\tau )}((h_1,w_1),(h_2,w_2))\Vert _{\mathcal {L}}\lesssim \Vert (h_1,w_1)\Vert _{W^{2,p}_{-q}\times W^{1,p}_{-q-1}}\Vert (h_2,w_2)\Vert _{W^{2,p}_{-q}\times W^{1,p}_{-q-1}}.\end{aligned}$$

For \(D^2\Theta \), we estimate each of the terms appearing in (A.6) in \(W^{1-\frac{1}{p},p}(\partial \Omega )\). Terms with derivatives are handled using Lemma 2.4 instead of Morrey’s inequality. Note that our schematic notation omits the normal \(\nu _g\) and mean curvature \(H_g\), however both of these are pointwise bounded in terms of \(\gamma \). Therefore, we obtain the estimate

$$\begin{aligned}\Vert D^2\Theta |_{(\gamma ,\tau )}\Vert _{W^{1-\frac{1}{p},p}}\lesssim \Vert (h_1,w_1)\Vert _{W^{2,p}_{-q}\times W^{1,p}_{-q-1}}\Vert (h_2,w_2)\Vert _{W^{2,p}_{-q}\times W^{1,p}_{-q-1}}, \end{aligned}$$

as desired. \(\square \)

We can now prove the main result of this appendix, Lemma A.1.

Proof of Lemma A.1

We first define a function

$$\begin{aligned} {\hat{\Psi }}_{(\gamma ,\tau )}:[(1,0)+K_1]\times K_2&\rightarrow {\mathcal {D}}\\ ((u,Y),(h,w))&\mapsto \Psi _{(\gamma ,\tau )}(u,Y)+(h,w), \end{aligned}$$

so that

$$\begin{aligned}\hat{{\mathcal {P}}}_{(\gamma ,\tau )}=(\Phi ,\Theta )\circ \hat{\Psi }_{(\gamma ,\tau )}.\end{aligned}$$

By the chain rule for functions on Banach spaces,

$$\begin{aligned} D\hat{{\mathcal {P}}}_{(\gamma ,\tau )}((v_1,Z_1),(h_1,w_1))=D(\Phi ,\Theta )\circ D{\hat{\Psi }}_{(\gamma ,\tau )}((v_1,Z_1),(h_1,w_1)).\end{aligned}$$
(A.12)

The second derivative is given by

$$\begin{aligned}&D^2\hat{{\mathcal {P}}}_{(\gamma ,\tau )}\Big (((v_1,Z_1),(h_1,w_1)),((v_2,Z_2),(h_2,w_2))\Big )\nonumber \\&\quad =D^2(\Theta ,\Phi )\Big (D{\hat{\Psi }}_{(\gamma ,\tau )}((v_1,Z_1),(h_1,w_1)),D{\hat{\Psi }}_{(\gamma ,\tau )}((v_2,Z_2),(h_2,w_2))\Big )\nonumber \\&\qquad +D(\Theta ,\Phi )\circ D^2{\hat{\Psi }}_{(\gamma ,\tau )}\Big (((v_1,Z_1),(h_1,w_1)),((v_2,Z_2),(h_2,w_2))\Big ). \end{aligned}$$
(A.13)

The derivatives of \(\hat{\Psi }_{(\gamma ,\tau )}\) are given by

$$\begin{aligned} D\hat{\Psi }_{(\gamma ,\tau )}((v_1,Z_1),(h_1,w_1))= & {} (su^{s-1}v_1\gamma +h_1, -\tfrac{3}{2} s u^{-\frac{3}{2} s-1}v(\tau +{\mathfrak {L}}_\gamma Y)\nonumber \\&+ u^{-\frac{3}{2}s}{\mathfrak {L}}_\gamma Z_1+w_1) \end{aligned}$$
(A.14)

and

$$\begin{aligned}&D^2\hat{\Psi }_{(\gamma ,\tau )}\Big (((v_1,Z_1),(h_1,w_1)),((v_2,Z_2),(h_2,w_2))\Big )=(s(s-1)u^{s-2}v_1v_2,\nonumber \\&\quad \tfrac{3}{2} s(\tfrac{3}{2} s+1)u^{-\frac{3}{2} s-2}v_1v_2(\tau +{\mathfrak {L}}_\gamma Y)-\tfrac{3}{2} s u^{-\frac{3}{2} s-1}v_2{\mathfrak {L}}_\gamma Z_1 -\tfrac{3}{2} s u^{-\frac{3}{2} s-1}v_1{\mathfrak {L}}_\gamma Z_2 ).\nonumber \\ \end{aligned}$$
(A.15)

In these formulas, the differentials are being evaluated at ((uY), (hw)) or \({\hat{\Psi }}_{(\gamma ,\tau )}((u,Y),(h,w))\), wherever appropriate.

To prove (A.1), we use (A.12) for \((\gamma ,\tau )\) and \((g,\pi )\) at ((1, 0), (0, 0)), which yields

$$\begin{aligned} D\hat{{\mathcal {P}}}_{(\gamma ,\tau )}-D\hat{{\mathcal {P}}}_{(g,\pi )}= & {} D(\Phi ,\Theta )|_{(\gamma ,\tau )}(D{\hat{\Psi }}_{(\gamma ,\tau )}-D{\hat{\Psi }}_{(g,\pi )})+(D(\Phi ,\Theta )|_{(\gamma ,\tau )}\\&-D(\Phi ,\Theta )|_{(g,\pi )})D{\hat{\Psi }}_{(g,\pi )}. \end{aligned}$$

For \((\gamma ,\tau )\) sufficiently close to \((g,\pi )\), we may evidently estimate both of these terms (in operator norm) using (A.14) and the estimate (A.10).

To prove (A.2), we note that (A.13) implies

$$\begin{aligned}\Vert D^2\hat{{\mathcal {P}}}_{(\gamma ,\tau )}|_{((u,Y),(h,w))}\Vert&\le \left\| D^2(\Theta ,\Phi )|_{{\hat{\Psi }}_{(\gamma ,\tau )}((u,Y),(h,w))}\right\| \cdot \left\| D{\hat{\Psi }}_{(\gamma ,\tau )}|_{((u,Y),(h,w))}\right\| ^2\\&\quad \quad + \left\| D(\Theta ,\Phi )|_{{\hat{\Psi }}_{(\gamma ,\tau )}((u,Y),(h,w))}\right\| \cdot \left\| D^2{\hat{\Psi }}_{(\gamma ,\tau )}|_{((u,Y),(h,w))}\right\| .\end{aligned}$$

For ((uY), (hw)) small, \(\hat{\Psi }_{(\gamma ,\tau )}((u,Y),(h,w))\) is close to \((g,\pi )\) in \({\mathcal {D}}\), so we may apply (A.10) and (A.11). Furthermore, the same estimates may be derived for \(D{\hat{\Psi }}\) and \(D^2{\hat{\Psi }}\) from (A.14) and (A.15). This completes the proof of (A.2).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.A., Lesourd, M. & Unger, R. Density and Positive Mass Theorems for Initial Data Sets with Boundary. Commun. Math. Phys. 395, 643–677 (2022). https://doi.org/10.1007/s00220-022-04439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04439-1

Navigation