×

Weighted Radon transforms of vector fields, with applications to magnetoacoustoelectric tomography. (English) Zbl 1525.44001

A vector field \(F\) in \(\mathbb{R}^d\) is split into its potential and solenoidal component. The authors first prove that if the components of \(F\) are in the Schwartz space \({\mathcal S}(\mathbb{R}^d)\) of rapidly decreasing functions, the longitudinal and transversal Radon transforms of both components exist.
In practice, one of the transform types often cannot be measured, which makes reconstruction impossible. However, in certain measurement schemes such as magnetoacoustoelectric tomography (MAET), the longitudinal Radon transform as well as linearly weighted longitudinal transforms can be measured.
The authors present explicit inversion formulas for two distinct cases: First, reconstruction from one transversal and \(d-1\) linearly weighted transversal transforms. Second, reconstruction from \(d-1\) longitudinal and one linearly weighted longitudinal transform, which applies to MAET.
The formulas are illustrated by numerical simulations.

MSC:

44A12 Radon transform

References:

[1] Norton, S. J., Tomographic reconstruction of 2-D vector fields: application to flow imaging, Geophys. J. Int., 97, 161-8 (1989) · Zbl 0679.76092 · doi:10.1111/j.1365-246X.1989.tb00491.x
[2] Norton, S. J., Unique tomographic reconstruction of vector fields using boundary data, IEEE Trans. Image Process., 1, 406-12 (1992) · doi:10.1109/83.148612
[3] Sparr, G.; Strahlen, K., Vector field tomography, an overview, Technical Report, 1-26 (1998), Lund: Institute of Technology, Lund
[4] Schuster, T., 20 years of imaging in vector field tomography: a review, Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT) (CRM) vol 7 (2008), Basel: Birkhäuser, Basel
[5] Sharafutdinov, V. A., Integral Geometry of Tensor Fields, vol 1 (2012), Berlin: Walter de Gruyter, Berlin
[6] Stråhlén, K., Exponential vector field tomography, Int. Conf. on Image Analysis and Processing, pp 348-55 (1997), Berlin: Springer, Berlin
[7] Bukhgeim, A. A.; Kazantsev, S. G., Proc. 22nd IASTED Int. Conf. on Modelling, Identification, and Control (MIC 2003), pp 294-8 (2003)
[8] Natterer, F., Inverting the attenuated vectorial Radon transform, J. Inverse Ill-Posed Problems, 13, 93-101 (2005) · Zbl 1077.44002 · doi:10.1515/1569394053583720
[9] Bal, G., On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20, 399-418 (2004) · Zbl 1052.44001 · doi:10.1088/0266-5611/20/2/006
[10] Krishnan, V. P.; Manna, R.; Sahoo, S-K; Sharafutdinov, V. A., Momentum ray transforms, Inverse Problems Imaging, 13, 679-701 (2019) · Zbl 1426.44002 · doi:10.3934/ipi.2019031
[11] Mishra, R. K., Full reconstruction of a vector field from restricted Doppler and first integral moment transforms in \(####\), J. Inverse Ill-Posed Problems, 28, 173-84 (2020) · Zbl 1446.44001 · doi:10.1515/jiip-2018-0028
[12] Polyakova, A., Reconstruction of a vector field in a ball from its normal Radon transform, J. Math. Sci., 205, 418-39 (2015) · Zbl 1349.65731 · doi:10.1007/s10958-015-2256-1
[13] Polyakova, A. P.; Svetov, I. E., Numerical solution of the problem of reconstructing a potential vector field in the unit ball from its normal Radon transform, J. Appl. Ind. Math., 9, 547-58 (2015) · Zbl 1349.65702 · doi:10.1134/S1990478915040110
[14] Natterer, F., The Mathematics of Computerized Tomography (Classics in Applied Mathematics) (Society for Industrial Mathematics), p 184 (2001) · Zbl 0973.92020 · doi:10.1137/1.9780898719284
[15] Helgason, S., The Radon Transform Progress in Mathematics, vol 5 (1999), Berlin: Springer, Berlin · Zbl 0932.43011
[16] Wen, H.; Shah, J.; Balaban, R. S., Hall effect imaging, IEEE Trans. Biomed. Eng., 45, 119-24 (1998) · doi:10.1109/10.650364
[17] Grasland-Mongrain, P.; Mari, J-M; Chapelon, J-Y; Lafon, C., Lorentz force electrical impedance tomography, Innov. Res. BioMed. Eng., 34, 357-60 (2013) · doi:10.1016/j.irbm.2013.08.002
[18] Roth, B. J.; Schalte, K., Ultrasonically-induced Lorentz force tomography, Med. Biol. Eng. Comput., 47, 573-7 (2009) · doi:10.1007/s11517-009-0476-6
[19] Zengin, R.; Gençer, N. G., Lorentz force electrical impedance tomography using magnetic field measurements, Phys. Med. Biol., 61, 5887 (2016) · doi:10.1088/0031-9155/61/16/5887
[20] Montalibet, A.; Jossinet, J.; Matias, A.; Cathignol, D., Electric current generated by ultrasonically induced Lorentz force in biological media, Med. Biol. Eng. Comput., 39, 15-20 (2001) · doi:10.1007/BF02345261
[21] Kunyansky, L., A mathematical model and inversion procedure for magneto-acousto-electric tomography, Inverse Problems, 28 (2012) · Zbl 1236.78027 · doi:10.1088/0266-5611/28/3/035002
[22] Ammari, H.; Grasland-Mongrain, P.; Millien, P.; Seppecher, L.; Seo, J-K, A mathematical and numerical framework for ultrasonically-induced Lorentz force electrical impedance tomography, J. Math. Pures Appl., 103, 1390-409 (2015) · Zbl 1328.35297 · doi:10.1016/j.matpur.2014.11.003
[23] Kuchment, P.; Kunyansky, L., Mathematics of thermoacoustic tomography, Eur. J. Appl. Math., 19, 191-224 (2008) · Zbl 1185.35327 · doi:10.1017/S0956792508007353
[24] Kuchment, P.; Kunyansky, L., Mathematics of photoacoustic and thermoacoustic tomography, Handbook of Mathematical Methods in Imaging, pp 1117-67 (2015), New York: Springer, New York · Zbl 1331.92076
[25] Kunyansky, L.; Ingram, C. P.; Witte, R. S., Rotational magneto-acousto-electric tomography (MAET): theory and experimental validation, Phys. Med. Biol., 62, 3025 (2017) · doi:10.1088/1361-6560/aa6222
[26] Sun, T., Rapid rotational magneto-acousto-electrical tomography with filtered back-projection algorithm based on plane waves, Phys. Med. Biol., 66 (2021) · doi:10.1088/1361-6560/abef43
[27] Xia, H.; Ding, G.; Liu, G., Magneto-acousto-electrical tomography with magnetic induction based on laser-generated ultrasound transducer, J. Med. Imaging Health Inform., 9, 183-7 (2019) · doi:10.1166/jmihi.2019.2558
[28] Ding, G.; Xia, H.; Li, X.; Liu, G., Experimental study of magneto-acousto-electrical tomography based on laser-generated ultrasound technology, vol 10964 (2018), International Society for Optics and Photonics
[29] Tikhonov, A. N.; Arsenin, V. I., Solutions of Ill-Posed Problems (1997), New York: Wiley, New York
[30] Louis, A. K., Approximate inverse for linear and some nonlinear problems, Inverse Problems, 12, 175-90 (1996) · Zbl 0851.65036 · doi:10.1088/0266-5611/12/2/005
[31] Derevtsov, E. Y.; Efimov, A. V.; Louis, A. K.; Schuster, T., Singular value decomposition and its application to numerical inversion for ray transforms in 2d vector tomography, J. Inverse Ill-Posed Problems, 19, 689-715 (2011) · Zbl 1279.33015 · doi:10.1515/jiip.2011.047
[32] Derevtsov, E. Y.; Louis, A. K.; Maltseva, S. V.; Polyakova, A. P.; Svetov, I. E., Numerical solvers based on the method of approximate inverse for 2D vector and 2-tensor tomography problems, Inverse Problems, 33 (2017) · Zbl 1381.65100 · doi:10.1088/1361-6420/aa8f5a
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.