×

Full reconstruction of a vector field from restricted Doppler and first integral moment transforms in \(\mathbb{R}^n\). (English) Zbl 1446.44001

Summary: We show that a vector field in \(\mathbb{R}^n\) can be reconstructed uniquely from the knowledge of restricted Doppler and first integral moment transforms. The line complex we consider consists of all lines passing through a fixed curve \(\gamma \subset \mathbb{R}^n\). The question of reconstruction of a symmetric \(m\)-tensor field from the knowledge of the first \(m+1\) integral moments was posed by V. A. Sharafutdinov [Integral geometry for tensor fields. Transl. from the Russian. Utrecht: VSP (1994; Zbl 0883.53004); p. 78]. In this work, we provide an answer to Sharafutdinov’s question for the case of vector fields from restricted data comprising of the first two integral moment transforms.

MSC:

44A12 Radon transform
53C65 Integral geometry
46F12 Integral transforms in distribution spaces

Citations:

Zbl 0883.53004

References:

[1] A. Abhishek and R. K. Mishra, Support theorems and an injectivity result for integral moments of a symmetric m-tensor field, J. Fourier Anal. Appl. 25 (2019), no. 4, 1487-1512. · Zbl 07077712
[2] J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J. 55 (1987), no. 4, 943-948. · Zbl 0645.44001
[3] J. Boman and E. T. Quinto, Support theorems for Radon transforms on real analytic line complexes in three-space, Trans. Amer. Math. Soc. 335 (1993), no. 2, 877-890. · Zbl 0767.44001
[4] H. Braun and A. Hauck, Tomographic reconstruction of vector fields, IEEE Trans. Signal Process. 39 (2002), 464-471. · Zbl 0726.92012
[5] A. M. Cormack, Representation of a function by its line integrals, with some radiological applications, J. Appl. Phys. 34 (1963), 2722-2727. · Zbl 0117.32303
[6] A. Denisiuk, Reconstruction in the cone-beam vector tomography with two sources, Inverse Problems 34 (2018), no. 12, Article ID 124008. · Zbl 1418.44001
[7] A. Denisjuk, Inversion of the x-ray transform for 3D symmetric tensor fields with sources on a curve, Inverse Problems 22 (2006), no. 2, 399-411. · Zbl 1089.65131
[8] A. S. Denisyuk, Inversion of the generalized Radon transform, Applied Problems of Radon Transform, Amer. Math. Soc. Transl. Ser. 2 162, American Mathematical Society, Providence (1994), 19-32. · Zbl 0842.44004
[9] F. Eriksson, On the measure of solid angles, Math. Mag. 63 (1990), no. 3, 184-187. · Zbl 0721.51023
[10] G. W. Faris and R. L. Byer, Three-dimensional beam-deflection optical tomography of a supersonic jet, Appl. Optics 27 (1988), 5202-5212.
[11] D. Finch, I.-R. Lan and G. Uhlmann, Microlocal analysis of the x-ray transform with sources on a curve, Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ. 47, Cambridge University, Cambridge (2003), 193-218. · Zbl 1086.35134
[12] A. Greenleaf and G. Uhlmann, Nonlocal inversion formulas for the X-ray transform, Duke Math. J. 58 (1989), no. 1, 205-240. · Zbl 0668.44004
[13] R. Griesmaier, R. K. Mishra and C. Schmiedecke, Inverse source problems for Maxwell’s equations and the windowed Fourier transform, SIAM J. Sci. Comput. 40 (2018), no. 2, A1204-A1223. · Zbl 1390.35415
[14] A. Grigis and J. Sjöstrand, Microlocal Analysis for Differential Operators. An Introduction, London Math. Soc. Lecture Note Ser. 196, Cambridge University, Cambridge, 1994. · Zbl 0804.35001
[15] V. Guillemin and S. Sternberg, Some problems in integral geometry and some related problems in microlocal analysis, Amer. J. Math. 101 (1979), no. 4, 915-955. · Zbl 0446.58019
[16] S. Helgason, The Radon Transform, 2nd ed., Progr. Math. 5, Birkhäuser, Boston, 1999. · Zbl 0932.43011
[17] S. Holman and P. Stefanov, The weighted Doppler transform, Inverse Probl. Imaging 4 (2010), no. 1, 111-130. · Zbl 1198.44001
[18] B. M. Howe, P. F. Worcester and R. C. Spindel, Ocean acoustic tomography: Mesoscale velocity, J. Geophys. Res. Oceans 92 (1987), 3785-3805.
[19] A. Katsevich, Microlocal analysis of an FBP algorithm for truncated spiral cone beam data, J. Fourier Anal. Appl. 8 (2002), no. 5, 407-425. · Zbl 1161.44301
[20] A. Katsevich, Improved cone beam local tomography, Inverse Problems 22 (2006), no. 2, 627-643. · Zbl 1089.65132
[21] A. Katsevich and T. Schuster, An exact inversion formula for cone beam vector tomography, Inverse Problems 29 (2013), no. 6, Article ID 065013. · Zbl 1273.45010
[22] V. P. Krishnan, R. Manna, S. K. Sahoo and V. A. Sharafutdinov, Momentum ray transforms, Inverse Probl. Imaging 13 (2019), no. 3, 679-701. · Zbl 1426.44002
[23] V. P. Krishnan and R. K. Mishra, Microlocal analysis of a restricted ray transform on symmetric m-tensor fields in \mathbb{R}^n, SIAM J. Math. Anal. 50 (2018), no. 6, 6230-6254. · Zbl 1407.35241
[24] V. P. Krishnan, R. K. Mishra and F. Monard, On solenoidal-injective and injective ray transforms of tensor fields on surfaces, J. Inverse Ill-Posed Probl. 27 (2019), no. 4, 527-538. · Zbl 1418.35381
[25] D. Ludwig, The Radon transform on euclidean space, Comm. Pure Appl. Math. 19 (1966), 49-81. · Zbl 0134.11305
[26] R. Michel, Sur la rigidité imposée par la longueur des géodésiques, Invent. Math. 65 (1981/82), no. 1, 71-83. · Zbl 0471.53030
[27] W. Munk and C. Wunsch, Ocean acoustic tomography: A scheme for large scale monitoring, Deep Sea Res. Part A. Oceanographic Res. Papers 26 (1979), 123-161.
[28] V. Palamodov, Reconstruction of a differential form from doppler transform, SIAM J. Math. Anal. 41 (2009), no. 4, 1713-1720. · Zbl 1197.53098
[29] L. N. Pestov and V. A. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative curvature, Sibirsk. Mat. Zh. 29 (1988), no. 3, 114-130, 221. · Zbl 0659.53051
[30] J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, 75 years of Radon Transform (Vienna 1992), Conf. Proc. Lecture Notes Math. Phys. 4, International Press, Cambridge (1994), 324-339. · Zbl 0826.44001
[31] K. Ramaseshan, Microlocal analysis of the Doppler transform on \mathbb{R}^3, J. Fourier Anal. Appl. 10 (2004), no. 1, 73-82. · Zbl 1064.35223
[32] T. Sato, H. Aoki and O. Ikeda, Introduction of mass conservation law to improve the tomographic estimation of flow-velocity distribution from differential time-of-flight data, J. Acoust. Soc. Amer. 77 (1985), 2104-2106.
[33] T. Schuster, The 3D Doppler transform: elementary properties and computation of reconstruction kernels, Inverse Problems 16 (2000), no. 3, 701-722. · Zbl 1017.44005
[34] T. Schuster, An efficient mollifier method for three-dimensional vector tomography: Convergence analysis and implementation, Inverse Problems 17 (2001), no. 4, 739-766. · Zbl 0988.65121
[35] V. A. Sharafutdinov, A problem of integral geometry for generalized tensor fields on \(\mathbb{R}}^{n\), Dokl. Akad. Nauk SSSR 286 (1986), no. 2, 305-307.
[36] V. A. Sharafutdinov, Integral geometry of a tensor field on a manifold with upper-bounded curvature, Sibirsk. Mat. Zh. 33 (1992), no. 3, 192-204, 221. · Zbl 0788.53069
[37] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse Ill-posed Probl. Ser. 1, De Gruyter, Berlin, 1994. · Zbl 0883.53004
[38] V. A. Sharafutdinov, Slice-by-slice reconstruction algorithm for vector tomography with incomplete data, Inverse Problems 23 (2007), no. 6, 2603-2627. · Zbl 1135.65411
[39] G. Sparr and K. Strahlen, Vector field tomography: An overview, Technical Report, Centre for Mathematical Sciences, Lund Institute of Technology, Lund, 1998.
[40] P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J. 123 (2004), no. 3, 445-467. · Zbl 1058.44003
[41] P. Stefanov and G. Uhlmann, Boundary rigidity and stability for generic simple metrics, J. Amer. Math. Soc. 18 (2005), no. 4, 975-1003. · Zbl 1079.53061
[42] P. Stefanov and G. Uhlmann, Integral geometry on tensor fields on a class of non-simple Riemannian manifolds, Amer. J. Math. 130 (2008), no. 1, 239-268. · Zbl 1151.53033
[43] P. Stefanov, G. Uhlmann and A. Vasy, Inverting the local geodesic X-ray transform on tensors, J. Anal. Math. 136 (2018), no. 1, 151-208. · Zbl 1527.53063
[44] I. E. Svetov, Reconstruction of the solenoidal part of a three-dimensional vector field by its ray transforms along straight lines parallel to coordinate planes, Numer. Anal. Appl. 5 (2012), no. 3, 271-283. · Zbl 1299.65296
[45] I. E. Svetov, E. Y. Derevtsov, Y. S. Volkov and T. Schuster, A numerical solver based on B-splines for 2D vector field tomography in a refracting medium, Math. Comput. Simulation 97 (2014), 207-223. · Zbl 1499.65047
[46] M. Tanaka, S. A. Johnson, J. F. Greenleaf and G. Flandro, Acoustical Holography. Vol. 7, Springer, New York, 1977.
[47] H. K. Tuy, An inversion formula for cone-beam reconstruction, SIAM J. Appl. Math. 43 (1983), no. 3, 546-552. · Zbl 1452.44007
[48] G. Uhlmann and A. Vasy, The inverse problem for the local geodesic ray transform, Invent. Math. 205 (2016), no. 1, 83-120. · Zbl 1350.53098
[49] L. B. Vertgeim, Integral geometry problems for symmetric tensor fields with incomplete data, J. Inverse Ill-Posed Probl. 8 (2000), no. 3, 355-364. · Zbl 0966.44002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.