×

Self-duality and scattering map for the hyperbolic van Diejen systems with two coupling parameters (with an Appendix by S. Ruijsenaars). (English) Zbl 1422.70008

Summary: In this paper, we construct global action-angle variables for a certain two-parameter family of hyperbolic van Diejen systems. Following Ruijsenaars’ ideas on the translation invariant models, the proposed action-angle variables come from a thorough analysis of the commutation relation obeyed by the Lax matrix, whereas the proof of their canonicity is based on the study of the scattering theory. As a consequence, we show that the van Diejen system of our interest is self-dual with a factorized scattering map. Also, in an appendix by S. Ruijsenaars, a novel proof of the spectral asymptotics of certain exponential type matrix flows is presented. This result is of crucial importance in our scattering-theoretical analysis.

MSC:

70G65 Symmetries, Lie group and Lie algebra methods for problems in mechanics
70E55 Dynamics of multibody systems
70H06 Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics
17B80 Applications of Lie algebras and superalgebras to integrable systems

References:

[1] Calogero F.: Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419-436 (1971) · Zbl 1002.70558 · doi:10.1063/1.1665604
[2] Sutherland B.: Exact results for a quantum many body problem in one dimension. Phys. Rev. A 4, 2019-2021 (1971) · doi:10.1103/PhysRevA.4.2019
[3] Moser J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197-220 (1975) · Zbl 0303.34019 · doi:10.1016/0001-8708(75)90151-6
[4] Sutherland B.: Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems. World Scientific, Singapore (2004) · Zbl 1140.82016 · doi:10.1142/5552
[5] Olshanetsky M.A., Perelomov A.M.: Completely integrable Hamiltonian systems connected with semisimple Lie algebras. Invent. Math. 37, 93-108 (1976) · Zbl 0342.58017 · doi:10.1007/BF01418964
[6] Olshanetsky M.A., Perelomov A.M.: Classical integrable finite-dimensional systems related to Lie algebras. Phys. Rep. 71, 313-400 (1981) · doi:10.1016/0370-1573(81)90023-5
[7] Ruijsenaars S.N.M, Schneider H.: A new class of integrable models and its relation to solitons. Ann. Phys. (N.Y.) 170, 370-405 (1986) · Zbl 0608.35071 · doi:10.1016/0003-4916(86)90097-7
[8] Ruijsenaars, S.N.M.: Finite-dimensional soliton systems. In: Kupershmidt, B. (ed.), Integrable and Superintegrable Systems. World Scientific, pp. 165-206 (1990) · Zbl 0667.58016
[9] van Diejen J.F.: Commuting difference operators with polynomial eigenfunctions. Compos. Math. 95, 183-233 (1995) · Zbl 0838.33010
[10] van Diejen J.F.: Deformations of Calogero-Moser systems and finite Toda chains. Theor. Math. Phys. 99, 549-554 (1994) · Zbl 0851.58021 · doi:10.1007/BF01016137
[11] van Diejen J.F.: Difference Calogero-Moser systems and finite Toda chains. J. Math. Phys. 36, 1299-1323 (1995) · Zbl 0851.70016 · doi:10.1063/1.531122
[12] Kazhdan D., Kostant B., Sternberg S.: Hamiltonian group actions and dynamical systems of Calogero type. Commun. Pure Appl. Math. XXXI, 481-507 (1978) · Zbl 0368.58008 · doi:10.1002/cpa.3160310405
[13] Nekrasov N.: Holomorphic bundles and many-body systems. Commun. Math. Phys. 180, 587-603 (1996) · Zbl 0859.35104 · doi:10.1007/BF02099624
[14] Wilson G.: Collisions of Calogero-Moser particles and an adelic Grassmannian (with an Appendix by I.G. Macdonald). Invent. Math. 133, 1-41 (1998) · Zbl 0906.35089 · doi:10.1007/s002220050237
[15] Hurtubise J.C., Markman E.: Calogero-Moser systems and Hitchin systems. Commun. Math. Phys. 223, 533-582 (2001) · Zbl 0999.37048 · doi:10.1007/s002200100546
[16] Hurtubise J., Nevins T.: The geometry of Calogero-Moser systems. Ann. Inst. Fourier, Grenoble 55, 2091-2116 (2005) · Zbl 1135.37023 · doi:10.5802/aif.2153
[17] Olshanetsky M.A., Perelomov A.M.: Quantum systems related to root systems, and radial parts of Laplace operators. Funct. Anal. Appl. 12, 121-128 (1978) · Zbl 0407.43012 · doi:10.1007/BF01076255
[18] Heckmam G.J., Opdam E.M.: Root systems and hypergeometric functions I. Compos. Math. 64, 329-352 (1987) · Zbl 0656.17006
[19] Etingof P., Kirillov A.A. Jr.: A unified representation-theoretic approach to special functions. Funct. Anal. Appl. 28, 91-94 (1994) · Zbl 0868.33010
[20] Cherednik I.: Double Affine Hecke Algebras, London Mathematical Society Lecture Notes Series, vol. 319. Cambridge University Press, Cambridge (2005) · Zbl 1087.20003 · doi:10.1017/CBO9780511546501
[21] Etingof, P.I.: Calogero-Moser Systems and Representation Theory, European Mathematical Society (2007) · Zbl 1331.53002
[22] Avan J., Babelon O., Billey E.: The Gervais-Neveu-Felder equation and the quantum Calogero-Moser systems. Commun. Math. Phys. 178, 281-299 (1996) · Zbl 0870.17019 · doi:10.1007/BF02099449
[23] Li L.C., Xu P.: A class of integrable spin Calogero-Moser systems. Commun. Math. Phys. 231, 257-286 (2002) · Zbl 1012.37034 · doi:10.1007/s00220-002-0724-1
[24] Etingof P., Latour F.: The Dynamical Yang-Baxter Equation, Representation Theory, and Quantum Integrable Systems. Oxford University Press, Oxford (2005) · Zbl 1071.17012
[25] D’Hoker E., Phong D.H.: Seiberg-Witten theory and Calogero-Moser systems. Prog. Theor. Phys. Suppl. 135, 75-93 (1999) · doi:10.1143/PTPS.135.75
[26] Blom J., Langmann E.: Finding and solving Calogero-Moser type systems using Yang-Mills gauge theories. Nucl. Phys. B 563, 506-532 (1999) · Zbl 0956.81095 · doi:10.1016/S0550-3213(99)00550-7
[27] Mukhin E., Tarasov V., Varchenko A.: Gaudin Hamiltonians generate the Bethe algebra of a tensor power of the vector representation of \[{\mathfrak{gl}_N}\] glN. St. Petersburg Math. J. 22, 463-472 (2011) · Zbl 1219.82121 · doi:10.1090/S1061-0022-2011-01152-5
[28] Alexandrov A., Leurent S., Tsuboi Z., Zabrodin A.: The master T-operator for the Gaudin model and the KP hierarchy. Nucl. Phys. B 883, 173-223 (2014) · Zbl 1323.37037 · doi:10.1016/j.nuclphysb.2014.03.008
[29] Gorsky A., Zabrodin A., Zotov A.: Spectrum of quantum transfer matrices via classical many-body systems. JHEP 01, 070 (2014) · Zbl 1333.81244 · doi:10.1007/JHEP01(2014)070
[30] Tsuboi Z., Zabrodin A., Zotov A.: Supersymmetric quantum spin chains and classical integrable systems. JHEP 05, 086 (2015) · Zbl 1388.81159 · doi:10.1007/JHEP05(2015)086
[31] Beketov M., Liashyk A., Zabrodin A., Zotov A.: Trigonometric version of quantum-classical duality in integrable systems. Nucl. Phys. B 903, 150-163 (2016) · Zbl 1332.82064 · doi:10.1016/j.nuclphysb.2015.12.005
[32] Bogomolny E., Giraud O., Schmit C.: Random matrix ensembles associated with Lax matrices. Phys. Rev. Lett. 103, 054103 (2009) · Zbl 1255.15042 · doi:10.1103/PhysRevLett.103.054103
[33] Bogomolny E., Giraud O., Schmit C.: Integrable random matrix ensembles. Nonlinearity 24, 3179-3213 (2011) · Zbl 1255.15042 · doi:10.1088/0951-7715/24/11/010
[34] Fyodorov Y.V., Giraud O.: High values of disorder-generated multifractals and logarithmically correlated processes. Chaos, Solitons & Fractals 74, 15-26 (2015) · Zbl 1352.82006 · doi:10.1016/j.chaos.2014.11.018
[35] Aminov G., Arthamonov S., Smirnov A., Zotov A.: Rational top and its classical R-matrix. J. Phys. A: Math. Theor. 47, 305207 (2014) · Zbl 1391.81091 · doi:10.1088/1751-8113/47/30/305207
[36] Levin A., Olshanetsky M., Zotov A.: Relativistic classical integrable tops and quantum R-matrices. JHEP 07, 012 (2014) · doi:10.1007/JHEP07(2014)012
[37] Ruijsenaars S.N.M.: Action-angle maps and scattering theory for some finite dimensional integrable systems I. The pure soliton case. Commun. Math. Phys. 115, 127-165 (1988) · Zbl 0667.58016 · doi:10.1007/BF01238855
[38] Ruijsenaars S.N.M.: Action-angle maps and scattering theory for some finite dimensional integrable systems II. Solitons, antisolitons and their bound states. Publ. RIMS 30, 865-1008 (1994) · Zbl 0842.58049
[39] Ruijsenaars S.N.M.: Action-angle maps and scattering theory for some finite dimensional integrable systems III. Sutherland type systems and their duals. Publ. RIMS 31, 247-353 (1995) · Zbl 0842.58050
[40] Babelon O., Bernard D.: The sine-Gordon solitons as an N-body problem. Phys. Lett. B 317, 363-368 (1993) · Zbl 0900.35340 · doi:10.1016/0370-2693(93)91009-C
[41] Nekrasov, N.: Infinite-dimensional algebras, many-body systems and gauge theories. In: Morozov, A.Yu, Olshanetsky, M.A. (eds.), Moscow Seminar in Mathematical Physics, AMS Transl. Ser. 2, vol. 191, American Mathematical Society, Providence, pp. 263-299 (1999) · Zbl 1056.37510
[42] Fock V., Gorsky A., Nekrasov N., Rubtsov V.: Duality in integrable systems and gauge theories. JHEP 07, 028 (2000) · Zbl 0965.81025 · doi:10.1088/1126-6708/2000/07/028
[43] Arutyunov G.E., Frolov S.A., Medvedev P.B.: Elliptic Ruijsenaars-Schneider model via the Poisson reduction of the affine Heisenberg double. J. Phys. A 30, 5051-5063 (1997) · Zbl 0925.81437 · doi:10.1088/0305-4470/30/14/016
[44] Arutyunov G.E., Frolov S.A., Medvedev P.B.: Elliptic Ruijsenaars-Schneider model from the cotangent bundle over the two-dimensional current group. J. Math. Phys. 38, 5682-5689 (1997) · Zbl 0892.58039 · doi:10.1063/1.532160
[45] Fehér L., Klimčík C.: On the duality between the hyperbolic Sutherland and the rational Ruijsenaars-Schneider models. J. Phys. A: Math. Theor. 42, 185202 (2009) · Zbl 1168.37016 · doi:10.1088/1751-8113/42/18/185202
[46] Fehér L., Ayadi V.: Trigonometric Sutherland systems and their Ruijsenaars duals from symplectic reduction. J. Math. Phys. 51, 103511 (2010) · Zbl 1314.37042 · doi:10.1063/1.3492919
[47] Fehér L., Klimčík C.: Poisson-Lie interpretation of trigonometric Ruijsenaars duality. Commun. Math. Phys. 301, 55-104 (2011) · Zbl 1208.53085 · doi:10.1007/s00220-010-1140-6
[48] Fehér L., Klimčík C.: Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction. Nucl. Phys. B 860, 464-515 (2012) · Zbl 1246.70016 · doi:10.1016/j.nuclphysb.2012.03.005
[49] Fehér L., Kluck T.J.: New compact forms of the trigonometric Ruijsenaars-Schneider system. Nucl. Phys. B 882, 97-127 (2014) · Zbl 1285.70005 · doi:10.1016/j.nuclphysb.2014.02.020
[50] Fock, V.V., Rosly, A.A.: Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix. In: Morozov, A.Yu., Olshanetsky, M.A. (eds.), Moscow Seminar in Mathematical Physics, AMS Transl. Ser. 2, vol. 191, American Mathematical Society, Providence, pp. 67-86 (1999) · Zbl 0945.53050
[51] Oblomkov A.: Double affine Hecke algebras and Calogero-Moser spaces. Represent. Theory 8, 243-266 (2004) · Zbl 1078.20004 · doi:10.1090/S1088-4165-04-00246-8
[52] Chalykh, O., Fairon, M.: Multiplicative quiver varieties and generalised Ruijsenaars-Schneider models. arXiv:1704.05814 [math-ph] · Zbl 1418.70026
[53] Chen K., Hou B.Y.: The Dn Ruijsenaars-Schneider model. J. Phys. A 34, 7579-7589 (2001) · Zbl 0991.37046 · doi:10.1088/0305-4470/34/37/311
[54] Pusztai B.G.: Action-angle duality between the Cn-type hyperbolic Sutherland and the rational Ruijsenaars-Schneider-van Diejen models. Nucl. Phys. B 853, 139-173 (2011) · Zbl 1229.37073 · doi:10.1016/j.nuclphysb.2011.07.021
[55] Pusztai B.G.: The hyperbolic BCn Sutherland and the rational BCn Ruijsenaars-Schneider-van Diejen models: Lax matrices and duality. Nucl. Phys. B 856, 528-551 (2012) · Zbl 1246.70013 · doi:10.1016/j.nuclphysb.2011.11.015
[56] Fehér L., Görbe T.F.: Duality between the trigonometric BCn Sutherland system and a completed rational Ruijsenaars-Schneider-van Diejen system. J. Math. Phys. 55, 102704 (2014) · Zbl 1366.70016 · doi:10.1063/1.4898077
[57] Pusztai B.G.: Scattering theory of the hyperbolic BCn Sutherland and the rational BCn Ruijsenaars-Schneider-van Diejen models. Nucl. Phys. B 874, 647-662 (2013) · Zbl 1282.81174 · doi:10.1016/j.nuclphysb.2013.06.007
[58] Marshall I.: A new model in the Calogero-Ruijsenaars family. Commun. Math. Phys. 338, 563-587 (2015) · Zbl 1316.81047 · doi:10.1007/s00220-015-2388-7
[59] Fehér L., Görbe T.F.: The full phase space of a model in the Calogero-Ruijsenaars family. J. Geom. Phys. 115, 139-149 (2017) · Zbl 1377.37084 · doi:10.1016/j.geomphys.2016.04.018
[60] Fehér L., Marshall I.: The action-angle dual of an integrable Hamiltonian system of Ruijsenaars-Schneider-van Diejen type. J. Phys. A: Math. Theor. 50, 314004 (2017) · Zbl 1371.81158 · doi:10.1088/1751-8121/aa7934
[61] Ruijsenaars S.N.M.: The classical hyperbolic Askey-Wilson dynamics without bound states. Theor. Math. Phys. 154, 418-432 (2008) · Zbl 1169.70009 · doi:10.1007/s11232-008-0036-5
[62] Pusztai B.G., Görbe T.F.: Lax representation of the hyperbolic van Diejen dynamics with two coupling parameters. Commun. Math. Phys. 354, 829-864 (2017) · Zbl 1381.37069 · doi:10.1007/s00220-017-2935-5
[63] Knapp A.W.: Lie Groups Beyond an Introduction, Progress in Mathematics, vol. 140. Birkhäuser, Boston (2002) · Zbl 1075.22501
[64] Pusztai B.G.: On the scattering theory of the classical hyperbolic Cn Sutherland model. J. Phys. A: Math. Theor. 44, 155306 (2011) · Zbl 1344.81106 · doi:10.1088/1751-8113/44/15/155306
[65] Prasolov, V.V., Problems and Theorems in Linear Algebra, American Mathematical Society, Providence (1994) · Zbl 0803.15001
[66] Ruijsenaars S.N.M.: Complete integrability of relativistic Calogero-Moser systems and elliptic function identities. Commun. Math. Phys. 110, 191-213 (1987) · Zbl 0673.58024 · doi:10.1007/BF01207363
[67] Lee J.M.: Introduction to Smooth Manifolds, 2nd edn., Graduate Texts in Mathematics, vol. 218. Springer, New York (2013) · Zbl 1258.53002
[68] Hartman, P.: Ordinary Differential Equations, 2nd edn., SIAM, Philadelphia (2002) · Zbl 1009.34001
[69] Folland G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley-Interscience, John Wiley & Sons, New York (1999) · Zbl 0924.28001
[70] Kulish P.P.: Factorization of the classical and the quantum S matrix and conservation laws. Theor. Math. Phys. 26, 132-137 (1976) · doi:10.1007/BF01079418
[71] Moser, J.: The scattering problem for some particle systems on the line. In: Lecture Notes in Mathematics, vol. 597, Springer, New York, pp. 441-463 (1977) · Zbl 0357.35068
[72] Saleur M., Skorik S., Warner N.P.: The boundary sine-Gordon theory: classical and semi-classical analysis. Nucl. Phys. B 441, 421-436 (1995) · Zbl 0990.81705 · doi:10.1016/0550-3213(95)00021-J
[73] Kapustin A., Skorik S.: On the non-relativistic limit of the quantum sine-Gordon model with integrable boundary condition. Phys. Lett. A 196, 47-51 (1994) · doi:10.1016/0375-9601(94)91042-1
[74] Reed M., Simon B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators.. Academic Press, New York (1978) · Zbl 0401.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.