Skip to main content
Log in

Self-Duality and Scattering Map for the Hyperbolic van Diejen Systems with Two Coupling Parameters (with an Appendix by S. Ruijsenaars)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we construct global action-angle variables for a certain two-parameter family of hyperbolic van Diejen systems. Following Ruijsenaars’ ideas on the translation invariant models, the proposed action-angle variables come from a thorough analysis of the commutation relation obeyed by the Lax matrix, whereas the proof of their canonicity is based on the study of the scattering theory. As a consequence, we show that the van Diejen system of our interest is self-dual with a factorized scattering map. Also, in an appendix by S. Ruijsenaars, a novel proof of the spectral asymptotics of certain exponential type matrix flows is presented. This result is of crucial importance in our scattering-theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calogero F.: Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  2. Sutherland B.: Exact results for a quantum many body problem in one dimension. Phys. Rev. A 4, 2019–2021 (1971)

    Article  ADS  Google Scholar 

  3. Moser J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Sutherland B.: Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  5. Olshanetsky M.A., Perelomov A.M.: Completely integrable Hamiltonian systems connected with semisimple Lie algebras. Invent. Math. 37, 93–108 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Olshanetsky M.A., Perelomov A.M.: Classical integrable finite-dimensional systems related to Lie algebras. Phys. Rep. 71, 313–400 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ruijsenaars S.N.M, Schneider H.: A new class of integrable models and its relation to solitons. Ann. Phys. (N.Y.) 170, 370–405 (1986)

    Article  ADS  MATH  Google Scholar 

  8. Ruijsenaars, S.N.M.: Finite-dimensional soliton systems. In: Kupershmidt, B. (ed.), Integrable and Superintegrable Systems. World Scientific, pp. 165–206 (1990)

  9. van Diejen J.F.: Commuting difference operators with polynomial eigenfunctions. Compos. Math. 95, 183–233 (1995)

    MathSciNet  MATH  Google Scholar 

  10. van Diejen J.F.: Deformations of Calogero–Moser systems and finite Toda chains. Theor. Math. Phys. 99, 549–554 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. van Diejen J.F.: Difference Calogero–Moser systems and finite Toda chains. J. Math. Phys. 36, 1299–1323 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Kazhdan D., Kostant B., Sternberg S.: Hamiltonian group actions and dynamical systems of Calogero type. Commun. Pure Appl. Math. XXXI, 481–507 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nekrasov N.: Holomorphic bundles and many-body systems. Commun. Math. Phys. 180, 587–603 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Wilson G.: Collisions of Calogero–Moser particles and an adelic Grassmannian (with an Appendix by I.G. Macdonald). Invent. Math. 133, 1–41 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Hurtubise J.C., Markman E.: Calogero–Moser systems and Hitchin systems. Commun. Math. Phys. 223, 533–582 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hurtubise J., Nevins T.: The geometry of Calogero–Moser systems. Ann. Inst. Fourier, Grenoble 55, 2091–2116 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Olshanetsky M.A., Perelomov A.M.: Quantum systems related to root systems, and radial parts of Laplace operators. Funct. Anal. Appl. 12, 121–128 (1978)

    Article  MATH  Google Scholar 

  18. Heckmam G.J., Opdam E.M.: Root systems and hypergeometric functions I. Compos. Math. 64, 329–352 (1987)

    MathSciNet  MATH  Google Scholar 

  19. Etingof P., Kirillov A.A. Jr.: A unified representation-theoretic approach to special functions. Funct. Anal. Appl. 28, 91–94 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Cherednik I.: Double Affine Hecke Algebras, London Mathematical Society Lecture Notes Series, vol. 319. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  21. Etingof, P.I.: Calogero–Moser Systems and Representation Theory, European Mathematical Society (2007)

  22. Avan J., Babelon O., Billey E.: The Gervais–Neveu–Felder equation and the quantum Calogero–Moser systems. Commun. Math. Phys. 178, 281–299 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Li L.C., Xu P.: A class of integrable spin Calogero–Moser systems. Commun. Math. Phys. 231, 257–286 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Etingof P., Latour F.: The Dynamical Yang–Baxter Equation, Representation Theory, and Quantum Integrable Systems. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  25. D’Hoker E., Phong D.H.: Seiberg–Witten theory and Calogero–Moser systems. Prog. Theor. Phys. Suppl. 135, 75–93 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  26. Blom J., Langmann E.: Finding and solving Calogero–Moser type systems using Yang–Mills gauge theories. Nucl. Phys. B 563, 506–532 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Mukhin E., Tarasov V., Varchenko A.: Gaudin Hamiltonians generate the Bethe algebra of a tensor power of the vector representation of \({\mathfrak{gl}_N}\). St. Petersburg Math. J. 22, 463–472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Alexandrov A., Leurent S., Tsuboi Z., Zabrodin A.: The master T-operator for the Gaudin model and the KP hierarchy. Nucl. Phys. B 883, 173–223 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Gorsky A., Zabrodin A., Zotov A.: Spectrum of quantum transfer matrices via classical many-body systems. JHEP 01, 070 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Tsuboi Z., Zabrodin A., Zotov A.: Supersymmetric quantum spin chains and classical integrable systems. JHEP 05, 086 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. Beketov M., Liashyk A., Zabrodin A., Zotov A.: Trigonometric version of quantum-classical duality in integrable systems. Nucl. Phys. B 903, 150–163 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Bogomolny E., Giraud O., Schmit C.: Random matrix ensembles associated with Lax matrices. Phys. Rev. Lett. 103, 054103 (2009)

    Article  ADS  Google Scholar 

  33. Bogomolny E., Giraud O., Schmit C.: Integrable random matrix ensembles. Nonlinearity 24, 3179–3213 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Fyodorov Y.V., Giraud O.: High values of disorder-generated multifractals and logarithmically correlated processes. Chaos, Solitons & Fractals 74, 15–26 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Aminov G., Arthamonov S., Smirnov A., Zotov A.: Rational top and its classical R-matrix. J. Phys. A: Math. Theor. 47, 305207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Levin A., Olshanetsky M., Zotov A.: Relativistic classical integrable tops and quantum R-matrices. JHEP 07, 012 (2014)

    Article  ADS  Google Scholar 

  37. Ruijsenaars S.N.M.: Action-angle maps and scattering theory for some finite dimensional integrable systems I. The pure soliton case. Commun. Math. Phys. 115, 127–165 (1988)

    Article  ADS  MATH  Google Scholar 

  38. Ruijsenaars S.N.M.: Action-angle maps and scattering theory for some finite dimensional integrable systems II. Solitons, antisolitons and their bound states. Publ. RIMS 30, 865–1008 (1994)

    MATH  Google Scholar 

  39. Ruijsenaars S.N.M.: Action-angle maps and scattering theory for some finite dimensional integrable systems III. Sutherland type systems and their duals. Publ. RIMS 31, 247–353 (1995)

    MathSciNet  MATH  Google Scholar 

  40. Babelon O., Bernard D.: The sine-Gordon solitons as an N-body problem. Phys. Lett. B 317, 363–368 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Nekrasov, N.: Infinite-dimensional algebras, many-body systems and gauge theories. In: Morozov, A.Yu, Olshanetsky, M.A. (eds.), Moscow Seminar in Mathematical Physics, AMS Transl. Ser. 2, vol. 191, American Mathematical Society, Providence, pp. 263–299 (1999)

  42. Fock V., Gorsky A., Nekrasov N., Rubtsov V.: Duality in integrable systems and gauge theories. JHEP 07, 028 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Arutyunov G.E., Frolov S.A., Medvedev P.B.: Elliptic Ruijsenaars–Schneider model via the Poisson reduction of the affine Heisenberg double. J. Phys. A 30, 5051–5063 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Arutyunov G.E., Frolov S.A., Medvedev P.B.: Elliptic Ruijsenaars–Schneider model from the cotangent bundle over the two-dimensional current group. J. Math. Phys. 38, 5682–5689 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Fehér L., Klimčík C.: On the duality between the hyperbolic Sutherland and the rational Ruijsenaars–Schneider models. J. Phys. A: Math. Theor. 42, 185202 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Fehér L., Ayadi V.: Trigonometric Sutherland systems and their Ruijsenaars duals from symplectic reduction. J. Math. Phys. 51, 103511 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Fehér L., Klimčík C.: Poisson–Lie interpretation of trigonometric Ruijsenaars duality. Commun. Math. Phys. 301, 55–104 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Fehér L., Klimčík C.: Self-duality of the compactified Ruijsenaars–Schneider system from quasi-Hamiltonian reduction. Nucl. Phys. B 860, 464–515 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Fehér L., Kluck T.J.: New compact forms of the trigonometric Ruijsenaars–Schneider system. Nucl. Phys. B 882, 97–127 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Fock, V.V., Rosly, A.A.: Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix. In: Morozov, A.Yu., Olshanetsky, M.A. (eds.), Moscow Seminar in Mathematical Physics, AMS Transl. Ser. 2, vol. 191, American Mathematical Society, Providence, pp. 67–86 (1999)

  51. Oblomkov A.: Double affine Hecke algebras and Calogero–Moser spaces. Represent. Theory 8, 243–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. Chalykh, O., Fairon, M.: Multiplicative quiver varieties and generalised Ruijsenaars–Schneider models. arXiv:1704.05814 [math-ph]

  53. Chen K., Hou B.Y.: The D n Ruijsenaars–Schneider model. J. Phys. A 34, 7579–7589 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Pusztai B.G.: Action-angle duality between the C n -type hyperbolic Sutherland and the rational Ruijsenaars–Schneider–van Diejen models. Nucl. Phys. B 853, 139–173 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Pusztai B.G.: The hyperbolic BC n Sutherland and the rational BC n Ruijsenaars–Schneider–van Diejen models: Lax matrices and duality. Nucl. Phys. B 856, 528–551 (2012)

    Article  ADS  MATH  Google Scholar 

  56. Fehér L., Görbe T.F.: Duality between the trigonometric BC n Sutherland system and a completed rational Ruijsenaars–Schneider–van Diejen system. J. Math. Phys. 55, 102704 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Pusztai B.G.: Scattering theory of the hyperbolic BC n Sutherland and the rational BC n Ruijsenaars–Schneider–van Diejen models. Nucl. Phys. B 874, 647–662 (2013)

    Article  ADS  MATH  Google Scholar 

  58. Marshall I.: A new model in the Calogero–Ruijsenaars family. Commun. Math. Phys. 338, 563–587 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Fehér L., Görbe T.F.: The full phase space of a model in the Calogero–Ruijsenaars family. J. Geom. Phys. 115, 139–149 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Fehér L., Marshall I.: The action-angle dual of an integrable Hamiltonian system of Ruijsenaars–Schneider–van Diejen type. J. Phys. A: Math. Theor. 50, 314004 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Ruijsenaars S.N.M.: The classical hyperbolic Askey–Wilson dynamics without bound states. Theor. Math. Phys. 154, 418–432 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Pusztai B.G., Görbe T.F.: Lax representation of the hyperbolic van Diejen dynamics with two coupling parameters. Commun. Math. Phys. 354, 829–864 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Knapp A.W.: Lie Groups Beyond an Introduction, Progress in Mathematics, vol. 140. Birkhäuser, Boston (2002)

    Google Scholar 

  64. Pusztai B.G.: On the scattering theory of the classical hyperbolic C n Sutherland model. J. Phys. A: Math. Theor. 44, 155306 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Prasolov, V.V., Problems and Theorems in Linear Algebra, American Mathematical Society, Providence (1994)

  66. Ruijsenaars S.N.M.: Complete integrability of relativistic Calogero–Moser systems and elliptic function identities. Commun. Math. Phys. 110, 191–213 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Lee J.M.: Introduction to Smooth Manifolds, 2nd edn., Graduate Texts in Mathematics, vol. 218. Springer, New York (2013)

    Google Scholar 

  68. Hartman, P.: Ordinary Differential Equations, 2nd edn., SIAM, Philadelphia (2002)

  69. Folland G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley-Interscience, John Wiley & Sons, New York (1999)

    MATH  Google Scholar 

  70. Kulish P.P.: Factorization of the classical and the quantum S matrix and conservation laws. Theor. Math. Phys. 26, 132–137 (1976)

    Article  MathSciNet  Google Scholar 

  71. Moser, J.: The scattering problem for some particle systems on the line. In: Lecture Notes in Mathematics, vol. 597, Springer, New York, pp. 441–463 (1977)

  72. Saleur M., Skorik S., Warner N.P.: The boundary sine-Gordon theory: classical and semi-classical analysis. Nucl. Phys. B 441, 421–436 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Kapustin A., Skorik S.: On the non-relativistic limit of the quantum sine-Gordon model with integrable boundary condition. Phys. Lett. A 196, 47–51 (1994)

    Article  ADS  Google Scholar 

  74. Reed M., Simon B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators.. Academic Press, New York (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Gábor Pusztai.

Additional information

Communicated by P. Deift

S. Ruijsenaars—School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK. E-mail: siru@maths.leeds.ac.uk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pusztai, B.G. Self-Duality and Scattering Map for the Hyperbolic van Diejen Systems with Two Coupling Parameters (with an Appendix by S. Ruijsenaars). Commun. Math. Phys. 359, 1–60 (2018). https://doi.org/10.1007/s00220-017-3035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3035-2

Navigation