×

Non-stationary difference equation for \(q\)-Virasoro conformal blocks. (English) Zbl 07930035

Summary: Conformal blocks of \(q, t\)-deformed Virasoro and \(\mathcal{W}\)-algebras are important special functions in representation theory with applications in geometry and physics. In the Nekrasov-Shatashvili limit \(t \rightarrow 1\), whenever one of the representations is degenerate then conformal block satisfies a difference equation with respect to the coordinate associated with that degenerate representation. This is a stationary Schrodinger equation for an appropriate relativistic quantum integrable system. It is expected that generalization to generic \(t \neq 1\) is a non-stationary Schrodinger equation where \(t\) parametrizes shift in time. In this paper we make the non-stationary equation explicit for the \(q, t\)-Virasoro block with one degenerate and four generic Verma modules and prove it when three modules out of five are degenerate, using occasional relation to Macdonald polynomials.

MSC:

16T05 Hopf algebras and their applications
17B68 Virasoro and related algebras
39A06 Linear difference equations

References:

[1] Virasoro, M., Subsidiary conditions and ghosts in dual-resonance models, Phys. Rev. D., 1-10, 2933-2936, 1970 · doi:10.1103/PhysRevD.1.2933
[2] Gel’fand, I.; Fuchs, D., The cohomologies of the lie algebra of the vector fields in a circle, Funct. Anal. Appl., 2-4, 342-343, 1968 · Zbl 0176.11501 · doi:10.1007/BF01075687
[3] Belavin, A.; Polyakov, A.; Zamolodchikov, A., Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B, 241-2, 333-380, 1984 · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[4] Polyakov, A., Quantum geometry of bosonic strings, Phys. Lett. B, 103-3, 207-210, 1981 · doi:10.1016/0370-2693(81)90743-7
[5] Witten, E., Two-dimensional gravity and intersection theory on moduli space, Surv. Differ. Geom., 1, 243-310, 1990 · Zbl 0757.53049 · doi:10.4310/SDG.1990.v1.n1.a5
[6] Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147-1, 1-23, 1992 · Zbl 0756.35081 · doi:10.1007/BF02099526
[7] Maulik, D., Okounkov, A.: Quantum Groups and Quantum Cohomology. Asterisque 408, 212 (2019). doi:10.24033/ast.1074. arXiv:1211.1287 · Zbl 1422.14002
[8] Dijkgraaf, R.; Verlinde, H.; Verlinde, E., Loop equations and Virasoro constraints in non-perturbative two-dimensional quantum gravity, Nucl. Phys. B, 348-3, 435-456, 1991 · doi:10.1016/0550-3213(91)90199-8
[9] Alday, L.; Gaiotto, D.; Tachikawa, Y., Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys., 91, 167-197, 2010 · Zbl 1185.81111 · doi:10.1007/s11005-010-0369-5
[10] Moore, G.; Seiberg, N., Classical and quantum conformal field theory, Commun. Math. Phys., 123, 177-254, 1989 · Zbl 0694.53074 · doi:10.1007/BF01238857
[11] Etingof, P.; Kirillov, A. Jr, A unified representation-theoretic approach to special functions, Funct. Anal. Appl., 28, 1, 73-76, 1994 · Zbl 0868.33010 · doi:10.1007/BF01079011
[12] Gelfand, I.; Kapranov, M.; Zelevinsky, A., Generalized Euler integrals and A-hypergeometric functions, Adv. Math., 84-2, 255-271, 1990 · Zbl 0741.33011 · doi:10.1016/0001-8708(90)90048-R
[13] Ruijsenaars, S., On Barnes’ multiple zeta and gamma functions, Adv. Math., 156-1, 107-132, 2000 · Zbl 0966.33013 · doi:10.1006/aima.2000.1946
[14] Dubrovin, B., Theta functions and non-linear equations, Russ. Math. Surv., 36, 11, 1981 · Zbl 0549.58038 · doi:10.1070/RM1981v036n02ABEH002596
[15] Vilenkin, N., Special Functions and the Theory of Group Representations, 1968, Providence: Amer. Math. Soc, Providence · Zbl 0172.18404 · doi:10.1090/mmono/022
[16] Wigner, E.; Talman, J., Special functions, A Group Theoretic Approach, American Journal of Physics, 37, 1073, 1969 · doi:10.1119/1.1975207
[17] Etingof, P.; Kirillov, A. Jr, Macdonald’s polynomials and representations of quantum groups, Math. Res. Let., 1, 279-296, 1994 · Zbl 0833.17007 · doi:10.4310/MRL.1994.v1.n3.a1
[18] Etingof, P.; Kirillov, A. Jr, On the affine analogue of Jack’s and Macdonald’s polynomials, Duke Math. J., 78-2, 229-256, 1995 · Zbl 0873.33011 · doi:10.1215/S0012-7094-95-07810-7
[19] Alexandrov, A., Mironov, A., Morozov, A.: Partition functions of matrix models as the first special functions of string theory I. Finite Size Hermitean 1-Matrix Model. Int. J. Mod.Phys.A 19, 4127-4165 (2004). doi:10.1142/S0217751X04018245. arXiv:hep-th/0310113
[20] Alexandrov, A., Mironov, A., Morozov, A., Putrov, P.: Partition functions of matrix models as the first special functions of string theory. II. Kontsevich Model. Int. J. Mod. Phys. A 24, 4939-4998 (2009). doi:10.1142/S0217751X09046278. arXiv:0811.2825 · Zbl 1179.81127
[21] Mironov, A.; Morozov, A., The power of Nekrasov functions, Phys. Lett. B, 680, 188-194, 2009 · doi:10.1016/j.physletb.2009.08.061
[22] Dotsenko, V.; Fateev, V., Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys. B, 240, 312, 1984 · doi:10.1016/0550-3213(84)90269-4
[23] Mironov, A.; Morozov, A.; Shakirov, S., Conformal blocks as Dotsenko-Fateev integral discriminants, Int. J. Mod. Phys. A, 25-16, 3173-3207, 2010 · Zbl 1193.81091 · doi:10.1142/S0217751X10049141
[24] Mironov, A.; Morozov, A.; Shakirov, S., On “Dotsenko-Fateev” representation of the toric conformal blocks, J. Phys. A, 44, 2011 · Zbl 1209.81172 · doi:10.1088/1751-8113/44/8/085401
[25] Zamolodchikov, A., Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys., 65-3, 1205-1213, 1985 · doi:10.1007/BF01036128
[26] Shiraishi, J., Kubo, H., Awata, H., Odake, S.: A quantum deformation of the virasoro algebra and the macdonald symmetric functions. Lett. Math. Phys. 38, 33 (1996). doi:10.1007/BF00398297. arXiv:q-alg/9507034 · Zbl 0867.17010
[27] Awata, H.; Kubo, H.; Odake, S.; Shiraishi, J., Virasoro-type symmetries in solvable models, Lett. Math. Phys., 38, 33, 1996 · Zbl 0867.17010 · doi:10.1007/BF00398297
[28] Awata, H.; Yamada, Y., Five-dimensional AGT relation and the deformed \(\beta \)-ensemble, Prog. Theor. Phys., 124-2, 227-262, 2010 · Zbl 1201.81074 · doi:10.1143/PTP.124.227
[29] Faddeev, L.; Kashaev, R., Quantum dilogarithm, Mod. Phys. Lett. A, 9, 427-434, 1994 · Zbl 0866.17010 · doi:10.1142/S0217732394000447
[30] Nekrasov, N., Shatashvili, S.: Quantization of integrable systems and four dimensional gauge theories. In: XVI International Congress on Mathematical Physics 265-289, World Sci. Publ. (2010). arXiv:0908.4052 · Zbl 1214.83049
[31] Neguţ, A.: Affine Laumon spaces and integrable systems. arXiv:1112.1756
[32] Bullimore, M.; Kim, H-C; Koroteev, P., Defects and quantum Seiberg-Witten geometry, JHEP, 05, 095, 2015 · Zbl 1388.81788 · doi:10.1007/JHEP05(2015)095
[33] Shiraishi, J.: Affine screening operators, affine laumon spaces, and conjectures concerning non-stationary Ruijsenaars functions. J. Int. Sys. 4-1, xyz010 (2019). doi:10.1093/integr/xyz010. arXiv:1903.07495 · Zbl 1481.37062
[34] Langmann, E., Noumi, M., Shiraishi, J.: Basic properties of non-stationary Ruijsenaars functions. SIGMA 16, 105 (2020). doi:10.3842/SIGMA.2020.105. arXiv:2006.07171 · Zbl 1456.81210
[35] Frenkel, E., Reshetikhin, N.: Quantum Affine Algebras and Deformations of the Virasoro and \({{\cal{W}} } \)-algebras. Commun. Math. Phys. 178, 237-264 (1996). doi:10.1007/BF02104917. arXiv:q-alg/9505025 · Zbl 0869.17014
[36] Frenkel, E., Reshetikhin, N.: Towards deformed chiral algebras. In: XXIth International Colloquium on Group Theoretical Methods in Physics, Goslar (1996). arXiv:q-alg/9706023
[37] Awata, H.; Yamada, Y., Five-dimensional AGT conjecture and the deformed Virasoro algebra, JHEP, 1001, 125, 2010 · Zbl 1269.81157 · doi:10.1007/JHEP01(2010)125
[38] Carlsson, E., Nekrasov, N., Okounkov, A.: Five dimensional gauge theories and vertex operators. Mosc. Math. J. 14-1, 39-61 (2014). doi:10.17323/1609-4514-2014-14-1-39-61. arXiv:1308.2465 · Zbl 1303.14046
[39] Atiyah, M.; Bott, R., The moment map and equivariant cohomology, Topology, 23-1, 1-28, 1984 · Zbl 0521.58025 · doi:10.1016/0040-9383(84)90021-1
[40] Awata, H., Feigin, B., Hoshino, A., Kanai, M., Shiraishi, J., Yanagida, S.: Notes on Ding-Iohara algebra and AGT conjecture. arXiv:1106.4088
[41] Taki, M.: On AGT-\({\cal{W}}\) conjecture and \(q\)-deformed \({{\cal{W}}} \)-algebra. arXiv:1403.7016
[42] Aganagic, M., Shakirov, Sh.: Gauge/vortex duality and AGT. In: New Dualities of Supersymmetric Gauge Theories, Mathematical Physics Studies, Springer (2016). doi:10.1007/978-3-319-18769-3_13, arXiv:1412.7132 · Zbl 1334.81064
[43] Mironov, A.; Morozov, A.; Shakirov, S.; Smirnov, A., Proving AGT conjecture as HS duality: extension to five dimensions, Nucl. Phys. B, 855, 128-151, 2011 · Zbl 1229.81184 · doi:10.1016/j.nuclphysb.2011.09.021
[44] Fukuda, M., Ohkubo, Y., Shiraishi, J.: Generalized macdonald functions on Fock tensor spaces and duality formula for changing preferred direction. Commun. Math. Phys. 380-1, 1-70 (2020). doi:10.1007/s00220-020-03872-4. arXiv:1903.05905 · Zbl 1458.81035
[45] Neguţ, A.: The \(q\)-AGT-\({{\cal{W}} }\) relations via shuffle algebras. Commun. Math. Phys. 358, 101-170 (2018). doi:10.1007/s00220-018-3102-3. arXiv:1608.08613 · Zbl 1407.16029
[46] Lawrence, A.; Nekrasov, N., Instanton sums and five-dimensional gauge theories, Nucl. Phys. B, 513, 239-265, 1998 · Zbl 1052.81595 · doi:10.1016/S0550-3213(97)00694-9
[47] Felder, G.; Müller-Lennert, M., Analyticity of Nekrasov partition functions, Commun. Math. Phys., 364, 683-718, 2018 · Zbl 1400.81138 · doi:10.1007/s00220-018-3270-1
[48] Marshakov, A.; Mironov, A.; Morozov, A., On AGT relations with surface operator insertion and stationary limit of beta-ensembles, J. Geom. Phys., 61, 1203-1222, 2011 · Zbl 1215.81092 · doi:10.1016/j.geomphys.2011.01.012
[49] Gaiotto, D.; Kim, H-C, Surface defects and instanton partition functions, JHEP, 10, 012, 2016 · Zbl 1390.81594 · doi:10.1007/JHEP10(2016)012
[50] Mironov, A.: Seiberg-Witten theory and duality in integrable systems. In: Proceedings of the XXXIV PNPI Winter School. arXiv:hep-th/0011093
[51] Macdonald, I., Symmetric Functions and Hall Polynomials, 1995, New York: Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York · Zbl 0824.05059 · doi:10.1093/oso/9780198534891.001.0001
[52] Ruijsenaars, S., Schneider, H.: A new class of integrable systems and its relation to solitons. doi:10.1016/0003-4916(86)90097-7 · Zbl 0608.35071
[53] Gasper, G.; Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, 35, 1990, Cambridge: Cambridge University Press, Cambridge · Zbl 0695.33001
[54] Jackson, F., Transformations of \(q\)-series, Messenger Math., 39, 145-151, 1910
[55] Goulden, I., Jackson, D.: Transitive factorizations into transpositions and holomorphic mappings on the sphere. In: Proceedings of the American Mathematical Society, 125, 51-60 (1997) jstor.org/stable/2161793 · Zbl 0861.05006
[56] Kazarian, M., KP hierarchy for Hodge integrals, Adv. Math., 221-1, 1-21, 2009 · Zbl 1168.14006 · doi:10.1016/j.aim.2008.10.017
[57] Morozov, A.; Shakirov, S., Generation of matrix models by \({\cal{W} } \)-operators, JHEP, 0904, 064, 2009 · doi:10.1007/JHEP04(2009)064
[58] Morozov, A., Shakirov, Sh.: On \({\cal{W}} \)-representations of \(\beta \)- and \(q, t\)-deformed matrix models. Phys. Lett. B 792, 205-213 (2019). doi:10.1016/j.physletb.2019.03.047. arXiv:1901.02811 · Zbl 1416.81110
[59] Mironov, A.; Mishnyakov, V.; Morozov, A., Non-Abelian \({\cal{W} } \)-representation for GKM, Phys. Lett. B, 823, 136-721, 2021 · Zbl 1483.81121 · doi:10.1016/j.physletb.2021.136721
[60] Kashaev, R., Discrete Liouville equation and Teichmüller theory, Handbook of Teichmüller theory, III. IRMA Lect. Math. Theor. Phys., 17, 821-851, 2012 · Zbl 1256.30041 · doi:10.4171/103-1/16
[61] Kirillov, A., Jr.: On inner product in modular tensor categories. J. Am. Math. Soc. 9, 1135-1169 (1996). doi:10.1090/S0894-0347-96-00210-X. arXiv:q-alg/9508017 · Zbl 0861.05065
[62] Felder, G.; Varchenko, A., \(q\)-deformed KZB heat equation: completeness, modular properties and \(SL(3,{\mathbb{Z} })\), Adv. Math., 171, 228-275, 2002 · Zbl 1057.32007 · doi:10.1006/aima.2002.2080
[63] Gukov, S., Witten, E.: Gauge Theory, ramification, and the geometric Langlands program. Current developments in mathematics, Int. Press, Somerville, (2008), 35-180. arXiv:hep-th/0612073 · Zbl 1237.14024
[64] Nekrasov, N., Tsymbaliuk, A.: Surface defects in gauge theory and KZ equation. arXiv:2103.12611
[65] Koroteev, P., Shakirov, Sh.: The quantum DELL system. Lett. Math. Phys. 110, 969-999 (2020). doi:10.1007/s11005-019-01247-y. arXiv:1906.10354 · Zbl 1436.81060
[66] Alday, L.; Tachikawa, Y., Affine \(SL(2)\) conformal blocks from 4d Gauge theories, Lett. Math. Phys., 94, 87-114, 2010 · Zbl 1198.81162 · doi:10.1007/s11005-010-0422-4
[67] Okounkov, A., Smirnov, A.: Quantum Difference Equation for Nakajima Varieties. arXiv:1602.09007
[68] Kozçaz, C., Shakirov, Sh., Vafa, C., Yan, W.: Refined topological branes. Commun. Math. Phys. 385, 937-961 (2021). doi:10.1007/s00220-020-03883-1. arXiv:1805.00993 · Zbl 1467.81078
[69] Grassi, A.; Hatsuda, Y.; Marino, M., Topological strings from quantum mechanics, Ann. Henri Poincaré, 17, 3177-3235, 2016 · Zbl 1365.81094 · doi:10.1007/s00023-016-0479-4
[70] Lodin, R.; Popolitov, A.; Shakirov, S.; Zabzine, M., Solving \(q\)-Virasoro constraints, Lett. Math. Phys., 110, 179-210, 2020 · Zbl 1436.81106 · doi:10.1007/s11005-019-01216-5
[71] Zenkevich, Y., Quantum spectral curve for \((q, t)\)-matrix model, Lett. Math. Phys., 108, 413-424, 2018 · Zbl 1382.39005 · doi:10.1007/s11005-017-1015-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.