×

High-order composite implicit time integration schemes based on rational approximations for elastodynamics. (English) Zbl 1536.74024

Summary: A new approach for developing implicit composite time integration schemes is established starting with rational approximations of the matrix exponential in the solution of the equations of motion. The rational approximations are designed to have the same effective stiffness matrix in all sub-steps. An efficient algorithm is devised so that the implicit equation for a sub-step is in the same form as that of the trapezoidal method. The proposed \(M\)-schemes are \(M\)th order accurate using \(M\) sub-steps. The amount of numerical dissipation is controlled by a user-specified parameter \(\rho_\infty\). The \((M + 1)\)-schemes that are \((M + 1)\)th order accurate using \(M\) sub-steps can also be constructed, but the amount of numerical dissipation is built in the schemes and not adjustable. The order of accuracy of all the schemes is not affected by external forces and physical damping. Numerical examples demonstrate that the proposed high-order composite schemes are effective for introducing numerical dissipation and allow the use of large time step sizes in wave propagation problems. The source code written in is available for download at: https://github.com/ChongminSong/CompsiteTimeIntegration.

MSC:

74B20 Nonlinear elasticity
74S99 Numerical and other methods in solid mechanics

References:

[1] Bathe, K. J., Finite Element Procedures (2014), Prentice Hall, Pearson Education, Inc.
[2] Zienkiewicz, O. C.; Taylor, R. L.; Zhu, J. Z., The Finite Element Method: Its Basis and Fundamentals (2005), Elsevier: Elsevier Butterworth-Heinemann · Zbl 1307.74005
[3] Givoli, D., Dahlquist’s barriers and much beyond. J. Comput. Phys. (2023) · Zbl 07649260
[4] Hilber, H. M.; Hughes, T. J.R., Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics. Earthq. Eng. Struct. Dynam., 99-117 (1978)
[5] Houbolt, J. C., A recurrence matrix solution for the dynamic response of elastic aircraft. J. Aeronaut. Sci., 9, 540-550 (1950)
[6] Newmark, N. M., A method of computation for structural dynamics. ASCE J. Eng. Mech. Div., 3, 2067-2094 (1959)
[7] Wilson, E. L.; Farhoomand, I.; Bathe, K. J., Nonlinear dynamic analysis of complex structures. Earthq. Eng. Struct. Dyn., 3, 241-252 (1972)
[8] Hilber, H. M.; Hughes, T. J.R.; Taylor, R. L., Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn., 3, 283-292 (1977)
[9] Reusch, M. F.; Ratzan, L.; Pomphrey, N.; Park, W., Diagonal Padé approximations for initial value problems. SIAM J. Sci. Stat. Comput., 5, 829-838 (1988) · Zbl 0656.65057
[10] Chung, J.; Hulbert, G. M., A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\( \alpha\) method. J. Appl. Mech., 2, 371-375 (1993) · Zbl 0775.73337
[11] Bathe, K. J., Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme. Comput. Struct., 7-8, 437-445 (2007)
[12] Kuo, S. R.; Yau, J. D.; Yang, Y. B., A robust time-integration algorithm for solving nonlinear dynamic problems with large rotations and displacements. Int. J. Struct. Stab. Dyn., 06 (2012) · Zbl 1359.70003
[13] Soares, D., A simple and effective new family of time marching procedures for dynamics. Comput. Methods Appl. Mech. Engrg., 1138-1166 (2015) · Zbl 1425.65077
[14] Kim, W.; Reddy, J. N., A new family of higher-order time integration algorithms for the analysis of structural dynamics. J. Appl. Mech., 7 (2017)
[15] Noh, G.; Bathe, K. J., Further insights into an implicit time integration scheme for structural dynamics. Comput. Struct., 15-24 (2018)
[16] Kim, W.; Lee, J. H., A comparative study of two families of higher-order accurate time integration algorithms. Int. J. Comput. Methods, 08 (2020) · Zbl 07336580
[17] Behnoudfar, P.; Deng, Q.; Calo, V. M., Higher-order generalized-\( \alpha\) methods for hyperbolic problems. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1506.65101
[18] Malakiyeh, M. M.; Shojaee, S.; Hamzehei-Javaran, S.; Bathe, K. J., New insights into the \(\beta_1/ \beta_2\)-bathe time integration scheme when L-stable. Comput. Struct. (2021)
[19] Soares, D., An enhanced explicit-implicit time-marching formulation based on fully-adaptive time-integration parameters. Comput. Methods Appl. Mech. Engrg. (2023) · Zbl 1536.74279
[20] Wang, Y.; Xie, N.; Yin, L.; Lin, X.; Zhang, T.; Zhang, X.; Mei, S.; Xue, X.; Tamma, K., A truly self-starting composite isochronous integration analysis framework for first/second-order transient systems. Comput. Struct. (2023)
[21] Kim, W.; Reddy, J. N., Effective higher-order time integration algorithms for the analysis of linear structural dynamics. J. Appl. Mech., 7 (2017)
[22] Soares, D., A straightforward high-order accurate time-marching procedure for dynamic analyses. Eng. Comput., 1659-1677 (2020)
[23] Bathe, K. J.; Noh, G., Insight into an implicit time integration scheme for structural dynamics. Comput. Struct., 1-6 (2012)
[24] Noh, G.; Ham, S.; Bathe, K. J., Performance of an implicit time integration scheme in the analysis of wave propagations. Comput. Struct., 93-105 (2013)
[25] Kim, W.; Reddy, J. N., An improved time integration algorithm: A collocation time finite element approach. Int. J. Struct. Stab. Dyn., 02 (2017) · Zbl 1535.74643
[26] Wen, W.; Tao, Y.; Duan, S.; Yan, J.; Wei, K.; Fang, D., A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis. Comput. Struct., 126-149 (2017)
[27] Kim, W.; Choi, S. Y., An improved implicit time integration algorithm: The generalized composite time integration algorithm. Comput. Struct., 341-354 (2018)
[28] Noh, G.; Bathe, K. J., The Bathe time integration method with controllable spectral radius: The \(\rho_\infty \)-Bathe method. Comput. Struct., 299-310 (2019)
[29] Noh, G.; Bathe, K. J., For direct time integrations: A comparison of the Newmark and \(\rho_\infty \)-Bathe schemes. Comput. Struct. (2019)
[30] Malakiyeh, M. M.; Shojaee, S.; Bathe, K. J., The Bathe time integration method revisited for prescribing desired numerical dissipation. Comput. Struct., 289-298 (2019)
[31] Kim, W., An improved implicit method with dissipation control capability: The simple generalized composite time integration algorithm. Appl. Math. Model., 910-930 (2020) · Zbl 1481.70075
[32] Kwon, S. B.; Bathe, K. J.; Noh, G., Selecting the load at the intermediate time point of the \(\rho_\infty \)-bathe time integration scheme. Comput. Struct. (2021)
[33] Choi, B.; Bathe, K.; Noh, G., Time splitting ratio in the \(\rho \infty \)-bathe time integration method for higher-order accuracy in structural dynamics and heat transfer. Comput. Struct. (2022)
[34] Li, J.; Zhao, R.; Yu, K.; Li, X., Directly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamics. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.65118
[35] Noh, G.; Bathe, K. J., Imposing displacements in implicit direct time integration & a patch test. Adv. Eng. Softw. (2023)
[36] Bathe, K. J.; Baig, M. M.I., On a composite implicit time integration procedure for nonlinear dynamics. Comput. Struct., 31-32, 2513-2524 (2005)
[37] Chandra, Y.; Zhou, Y.; Stanciulescu, I.; Eason, T.; Spottswood, S., A robust composite time integration scheme for snap-through problems. Comput. Mech., 5, 1041-1056 (2015) · Zbl 1329.74306
[38] Kim, W.; Reddy, J. N., A comparative study of implicit and explicit composite time integration schemes. Int. J. Struct. Stab. Dyn., 13 (2020) · Zbl 1535.65094
[39] Grafenhorst, M.; Rang, J.; Hartmann, S., Time-adaptive finite element simulations of dynamical problems for temperature-dependent materials. J. Mech. Mater. Struct., 57-91 (2017)
[40] Wang, Y.; Xue, X.; Zhang, T.; Dai, Q.; Liu, Y.; Xie, N.; Mei, S.; Zhang, X.; Tamma, K. K., Overview and novel insights into implicit/explicit composite time integration type methods-fall under the RK: No ifs, ands, or buts. Arch. Comput. Methods Eng. (2023)
[41] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), The Johns Hopkins University Press · Zbl 0865.65009
[42] Fung, T. C., Complex-time-step Newmark methods with controllable numerical dissipation. Internat. J. Numer. Methods Engrg., 65-93 (1998) · Zbl 0916.73080
[43] Wang, M.; Au, F. T.K., Precise integration method without inverse matrix calculation for structural dynamic equations. Earthq. Eng. Eng. Vib., 57-64 (2007)
[44] Barucq, H.; Duruflé, M.; N’Diaye, M., High-order Padé and singly diagonally Runge-Kutta schemes for linear ODEs, application to wave propagation problems. Numer. Methods Partial Differential Eq., 2, 760-798 (2018) · Zbl 1390.65052
[45] Gao, Q.; Nie, C. B., An accurate and efficient Chebyshev expansion method for large-scale transient heat conduction problems. Comput. Struct. (2021)
[46] Song, C.; Eisenträger, S.; Zhang, X., High-order implicit time integration scheme based on Padé expansions. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.65120
[47] Song, C.; Zhang, X.; Eisenträger, S.; Ankit, A., High-order implicit time integration scheme with controllable numerical dissipation based on mixed-order Padé expansions. Comput. Struct. (2023)
[48] Depouhon, A.; Detournay, E.; Denoël, V., Accuracy of one-step integration schemes for damped/forced linear structural dynamics. Internat. J. Numer. Methods Engrg., 5, 333-353 (2014) · Zbl 1352.65189
[49] Kim, W., An accurate two-stage explicit time integration scheme for structural dynamics and various dynamic problems. Internat. J. Numer. Methods Engrg., 1, 1-28 (2019) · Zbl 07859723
[50] Batra, R. C.; Porfiri, M.; Spinello, D., Free and forced vibrations of a segmented bar by a meshless local Petrov-Galerkin (MLPG) formulation. Comput. Mech., 473-491 (2006) · Zbl 1162.74494
[51] Kim, K. T.; Bathe, K. J., Accurate solution of wave propagation problems in elasticity. Comput. Struct. (2021)
[52] Soares, D., A material/element-defined time integration procedure for dynamic analysis. Eng. Comput. (2023)
[53] Song, C., The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation (2018), Wiley
[54] Kwon, S. B.; Bathe, K. J.; Noh, G., An analysis of implicit time integration schemes for wave propagations. Comput. Struct. (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.