×

Chiral magnetic waves in strongly coupled Weyl semimetals. (English) Zbl 07862123

Summary: Propagating chiral magnetic waves (CMW) are expected to exist in chiral plasmas due to the interplay between the chiral magnetic and chiral separation effects induced by the presence of a chiral anomaly. Unfortunately, it was pointed out that, because of the effects of electric conductivity and dissipation, CMW are overdamped and therefore their signatures are unlikely to be seen in heavy-ion collision experiments and in the quark gluon plasma. Nonetheless, the chiral anomaly plays a fundamental role in Weyl semimetals and their anomalous transport properties as well. Hence, CMW could be potentially observed in topological semimetals using table-top experiments. By using a holographic model for strongly coupled Weyl semimetals, we investigate in detail the nature of CMW in presence of Coulomb interactions and axial charge relaxation and estimate whether, and in which regimes, CMW could be observed as underdamped collective excitations in topological materials.

MSC:

81-XX Quantum theory

References:

[1] Kharzeev, DE; Liao, J.; Voloshin, SA; Wang, G., Chiral magnetic and vortical effects in high-energy nuclear collisions — A status report, Prog. Part. Nucl. Phys., 88, 1, 2016 · doi:10.1016/j.ppnp.2016.01.001
[2] Landsteiner, K., Notes on Anomaly Induced Transport, Acta Phys. Polon. B, 47, 2617, 2016 · doi:10.5506/APhysPolB.47.2617
[3] Fukushima, K.; Kharzeev, DE; Warringa, HJ, The Chiral Magnetic Effect, Phys. Rev. D, 78, 2008 · doi:10.1103/PhysRevD.78.074033
[4] M.A. Metlitski and A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter, Phys. Rev. D72 (2005) 045011 [hep-ph/0505072] [INSPIRE].
[5] Erdmenger, J.; Haack, M.; Kaminski, M.; Yarom, A., Fluid dynamics of R-charged black holes, JHEP, 01, 055, 2009 · Zbl 1243.83037 · doi:10.1088/1126-6708/2009/01/055
[6] Banerjee, N., Hydrodynamics from charged black branes, JHEP, 01, 094, 2011 · Zbl 1214.83014 · doi:10.1007/JHEP01(2011)094
[7] G.M. Newman, Anomalous hydrodynamics, JHEP01 (2006) 158 [hep-ph/0511236] [INSPIRE].
[8] Kharzeev, DE; Yee, H-U, Chiral Magnetic Wave, Phys. Rev. D, 83, 2011 · doi:10.1103/PhysRevD.83.085007
[9] STAR collaboration, Charge asymmetry dependency of π^+/π^− elliptic flow in Au + Au collisions at \(\sqrt{{s}_{NN}} = 200\) GeV, J. Phys. Conf. Ser.389 (2012) 012035 [arXiv:1211.3216] [INSPIRE].
[10] ALICE collaboration, Charge-dependent anisotropic flow studies and the search for the Chiral Magnetic Wave in ALICE, Nucl. Phys. A931 (2014) 981 [arXiv:1408.1043] [INSPIRE].
[11] STAR collaboration, Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions, Phys. Rev. Lett.114 (2015) 252302 [arXiv:1504.02175] [INSPIRE].
[12] Burnier, Y.; Kharzeev, DE; Liao, J.; Yee, H-U, Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions, Phys. Rev. Lett., 107, 2011 · doi:10.1103/PhysRevLett.107.052303
[13] CMS collaboration, Probing the chiral magnetic wave in pPb and PbPb collisions at \(\sqrt{{s}_{NN}} = 5.02\) TeV using charge-dependent azimuthal anisotropies, Phys. Rev. C100 (2019) 064908 [arXiv:1708.08901] [INSPIRE].
[14] ALICE collaboration, Probing Chiral Magnetic Wave phenomena in Pb-Pb collisions with ALICE at the LHC, J. Phys. Conf. Ser.2586 (2023) 012025 [INSPIRE].
[15] Jimenez-Alba, A.; Landsteiner, K.; Melgar, L., Anomalous magnetoresponse and the Stückelberg axion in holography, Phys. Rev. D, 90, 2014 · doi:10.1103/PhysRevD.90.126004
[16] Hattori, K.; Hirono, Y.; Yee, H-U; Yin, Y., MagnetoHydrodynamics with chiral anomaly: phases of collective excitations and instabilities, Phys. Rev. D, 100, 2019 · doi:10.1103/PhysRevD.100.065023
[17] I.A. Shovkovy, D.O. Rybalka and E.V. Gorbar, The overdamped chiral magnetic wave, PoSConfinement2018 (2018) 029 [arXiv:1811.10635] [INSPIRE].
[18] M.J. Landry and H. Liu, A systematic formulation of chiral anomalous magnetohydrodynamics, arXiv:2212.09757 [INSPIRE].
[19] Grieninger, S.; Kharzeev, DE, Spacetime dynamics of chiral magnetic currents in a hot non-Abelian plasma, Phys. Rev. D, 108, 2023 · doi:10.1103/PhysRevD.108.126004
[20] Grieninger, S.; Morales-Tejera, S., Real-time dynamics of axial charge and chiral magnetic current in a non-Abelian expanding plasma, Phys. Rev. D, 108, 2023 · doi:10.1103/PhysRevD.108.126010
[21] Amoretti, A., Relaxation terms for anomalous hydrodynamic transport in Weyl semimetals from kinetic theory, JHEP, 02, 071, 2024 · Zbl 07837445 · doi:10.1007/JHEP02(2024)071
[22] Armitage, NP; Mele, EJ; Vishwanath, A., Weyl and Dirac Semimetals in Three Dimensional Solids, Rev. Mod. Phys., 90, 2018 · doi:10.1103/RevModPhys.90.015001
[23] Gallegos, AD; Gürsoy, U., Dynamical gauge fields and anomalous transport at strong coupling, JHEP, 05, 001, 2019 · Zbl 1416.81154 · doi:10.1007/JHEP05(2019)001
[24] A.A. Burkov, Negative longitudinal magnetoresistance in Dirac and Weyl metals, arXiv:1505.01849 [doi:10.1103/PhysRevB.91.245157].
[25] Xu, SY, Discovery of a Weyl Fermion semimetal and topological Fermi arcs, Science, 349, 613, 2015 · doi:10.1126/science.aaa9297
[26] B.Q. Lv et al., Observation of Weyl nodes in TaAs, arXiv:1503.09188 [doi:10.1038/nphys3426].
[27] Landsteiner, K.; Liu, Y.; Sun, Y-W, Negative magnetoresistivity in chiral fluids and holography, JHEP, 03, 127, 2015 · Zbl 1388.83356 · doi:10.1007/JHEP03(2015)127
[28] Lucas, A.; Davison, RA; Sachdev, S., Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals, Proc. Nat. Acad. Sci., 113, 9463, 2016 · doi:10.1073/pnas.1608881113
[29] Sukhachov, PO; Miransky, VA; Shovkovy, IA; Gorbar, EV, Collective excitations in Weyl semimetals in the hydrodynamic regime, J. Phys. Condens. Matter, 30, 2018 · doi:10.1088/1361-648X/aac500
[30] Gao, W., Photonic Weyl degeneracies in magnetized plasma, Nature Commun., 7, 12435, 2016 · doi:10.1038/ncomms12435
[31] Landsteiner, K.; Liu, Y., The holographic Weyl semi-metal, Phys. Lett. B, 753, 453, 2016 · Zbl 1367.82014 · doi:10.1016/j.physletb.2015.12.052
[32] Landsteiner, K.; Liu, Y.; Sun, Y-W, Quantum phase transition between a topological and a trivial semimetal from holography, Phys. Rev. Lett., 116, 2016 · doi:10.1103/PhysRevLett.116.081602
[33] Moon, E-G; Xu, C.; Kim, YB; Balents, L., Non-Fermi liquid and topological states with strong spin-orbit coupling, Phys. Rev. Lett., 111, 2013 · doi:10.1103/PhysRevLett.111.206401
[34] Herbut, IF; Janssen, L., Topological Mott insulator in three-dimensional systems with quadratic band touching, Phys. Rev. Lett., 113, 2014 · doi:10.1103/PhysRevLett.113.106401
[35] L. Janssen and I.F. Herbut, Phase diagram of electronic systems with quadratic Fermi nodes in 2 < d < 4: 2 + ϵ expansion, 4 − ϵ expansion, and functional renormalization group, Phys. Rev. B95 (2017) 075101 [arXiv:1611.04594] [INSPIRE].
[36] Tchoumakov, S.; Witczak-Krempa, W., Dielectric and electronic properties of three-dimensional Luttinger semimetals with a quadratic band touching, Phys. Rev. B, 100, 2019 · doi:10.1103/PhysRevB.100.075104
[37] S.M. Girvin and K. Yang, Modern condensed matter physics, Cambridge University Press (2019) [doi:10.1017/9781316480649]. · Zbl 1410.82002
[38] E. Witten, Multitrace operators, boundary conditions, and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
[39] Berkooz, M.; Sever, A.; Shomer, A., ‘Double trace’ deformations, boundary conditions and space-time singularities, JHEP, 05, 034, 2002 · doi:10.1088/1126-6708/2002/05/034
[40] Marolf, D.; Ross, SF, Boundary Conditions and New Dualities: Vector Fields in AdS/CFT, JHEP, 11, 085, 2006 · doi:10.1088/1126-6708/2006/11/085
[41] Domenech, O., Emergent Gauge Fields in Holographic Superconductors, JHEP, 08, 033, 2010 · Zbl 1291.82138 · doi:10.1007/JHEP08(2010)033
[42] Montull, M.; Pujolas, O.; Salvio, A.; Silva, PJ, Flux Periodicities and Quantum Hair on Holographic Superconductors, Phys. Rev. Lett., 107, 2011 · doi:10.1103/PhysRevLett.107.181601
[43] Gran, U.; Tornsö, M.; Zingg, T., Plasmons in Holographic Graphene, SciPost Phys., 8, 093, 2020 · doi:10.21468/SciPostPhys.8.6.093
[44] Mauri, E.; Stoof, HTC, Screening of Coulomb interactions in Holography, JHEP, 04, 035, 2019 · Zbl 1415.81089 · doi:10.1007/JHEP04(2019)035
[45] Ahn, Y., Holography and magnetohydrodynamics with dynamical gauge fields, JHEP, 02, 012, 2023 · Zbl 1541.81148 · doi:10.1007/JHEP02(2023)012
[46] Jeong, H-S; Baggioli, M.; Kim, K-Y; Sun, Y-W, Collective dynamics and the Anderson-Higgs mechanism in a bona fide holographic superconductor, JHEP, 03, 206, 2023 · Zbl 07690770 · doi:10.1007/JHEP03(2023)206
[47] Baggioli, M., How to sit Maxwell and Higgs on the boundary of Anti-de Sitter, JHAP, 3, 1, 2023
[48] Natsuume, M.; Okamura, T., Holographic Meissner effect, Phys. Rev. D, 106, 2022 · doi:10.1103/PhysRevD.106.086005
[49] Delacrétaz, LV; Hofman, DM; Mathys, G., Superfluids as Higher-form Anomalies, SciPost Phys., 8, 047, 2020 · doi:10.21468/SciPostPhys.8.3.047
[50] Zhang, C., Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl Fermion semimetal, Nature Commun., 7, 0735, 2016
[51] Baggioli, M.; Vasin, M.; Brazhkin, VV; Trachenko, K., Gapped momentum states, Phys. Rept., 865, 1, 2020 · Zbl 1497.82020 · doi:10.1016/j.physrep.2020.04.002
[52] Yang, C.; Dove, MT; Brazhkin, VV; Trachenko, K., Emergence and evolution of the k gap in spectra of liquid and supercritical states, Phys. Rev. Lett., 118, 2017 · doi:10.1103/PhysRevLett.118.215502
[53] Grozdanov, S.; Hofman, DM; Iqbal, N., Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev. D, 95, 2017 · doi:10.1103/PhysRevD.95.096003
[54] Landsteiner, K.; Liu, Y.; Sun, Y-W, Holographic topological semimetals, Sci. China Phys. Mech. Astron., 63, 2020 · doi:10.1007/s11433-019-1477-7
[55] Jimenez-Alba, A.; Landsteiner, K.; Liu, Y.; Sun, Y-W, Anomalous magnetoconductivity and relaxation times in holography, JHEP, 07, 117, 2015 · doi:10.1007/JHEP07(2015)117
[56] X. Li, B. Roy and S. Das Sarma, Weyl fermions with arbitrary monopoles in magnetic fields: Landau levels, longitudinal magnetotransport, and density-wave ordering, Phys. Rev. B94 (2016) 195144 [arXiv:1608.06632] [INSPIRE].
[57] Bruni, RCL; Ferreira, LF; Rodrigues, DM, Magnetic-field-driven topological phase transition in the holographic Weyl semimetal, Phys. Rev. D, 108, 2023 · doi:10.1103/PhysRevD.108.066010
[58] D. Colladay and V.A. Kostelecky, Lorentz violating extension of the standard model, Phys. Rev. D58 (1998) 116002 [hep-ph/9809521] [INSPIRE].
[59] Sun, Y-W; Yang, Q., Negative magnetoresistivity in holography, JHEP, 09, 122, 2016 · Zbl 1390.83147 · doi:10.1007/JHEP09(2016)122
[60] Gran, U.; Tornsö, M.; Zingg, T., Holographic Plasmons, JHEP, 11, 176, 2018 · Zbl 1405.81131 · doi:10.1007/JHEP11(2018)176
[61] Baggioli, M.; Bu, Y.; Ziogas, V., U(1) quasi-hydrodynamics: Schwinger-Keldysh effective field theory and holography, JHEP, 09, 019, 2023 · Zbl 07754598 · doi:10.1007/JHEP09(2023)019
[62] Baggioli, M.; Trachenko, K., Maxwell interpolation and close similarities between liquids and holographic models, Phys. Rev. D, 99, 2019 · doi:10.1103/PhysRevD.99.106002
[63] Baggioli, M.; Trachenko, K., Low frequency propagating shear waves in holographic liquids, JHEP, 03, 093, 2019 · Zbl 1414.83070 · doi:10.1007/JHEP03(2019)093
[64] Gran, U.; Tornsö, M.; Zingg, T., Exotic Holographic Dispersion, JHEP, 02, 032, 2019 · Zbl 1411.81179 · doi:10.1007/JHEP02(2019)032
[65] Baggioli, M., Holographic Plasmon Relaxation with and without Broken Translations, JHEP, 09, 013, 2019 · doi:10.1007/JHEP09(2019)013
[66] Baggioli, M.; Gran, U.; Tornsö, M., Transverse Collective Modes in Interacting Holographic Plasmas, JHEP, 04, 106, 2020 · doi:10.1007/JHEP04(2020)106
[67] Baggioli, M.; Gran, U.; Tornsö, M., Collective modes of polarizable holographic media in magnetic fields, JHEP, 06, 014, 2021 · doi:10.1007/JHEP06(2021)014
[68] Liu, Y.; Sun, Y-W, Topological nodal line semimetals in holography, JHEP, 12, 072, 2018 · Zbl 1405.81136 · doi:10.1007/JHEP12(2018)072
[69] Liu, Y.; Wu, X-M, An improved holographic nodal line semimetal, JHEP, 05, 141, 2021 · doi:10.1007/JHEP05(2021)141
[70] Rodgers, R.; Mauri, E.; Gürsoy, U.; Stoof, HTC, Thermodynamics and transport of holographic nodal line semimetals, JHEP, 11, 191, 2021 · Zbl 1521.81198 · doi:10.1007/JHEP11(2021)191
[71] Kaminski, M.; Uhlemann, CF; Bleicher, M.; Schaffner-Bielich, J., Anomalous hydrodynamics kicks neutron stars, Phys. Lett. B, 760, 170, 2016 · doi:10.1016/j.physletb.2016.06.054
[72] Hanai, S.; Yamamoto, N., Chiral asteroseismology: seismic oscillations caused by chiral transport in neutron stars and supernovae, JCAP, 10, 018, 2023 · doi:10.1088/1475-7516/2023/10/018
[73] M. Giovannini and M.E. Shaposhnikov, Primordial hypermagnetic fields and triangle anomaly, Phys. Rev. D57 (1998) 2186 [hep-ph/9710234] [INSPIRE].
[74] Kamada, K.; Yamamoto, N.; Yang, D-L, Chiral effects in astrophysics and cosmology, Prog. Part. Nucl. Phys., 129, 2023 · doi:10.1016/j.ppnp.2022.104016
[75] Xue, S., Electronic collective excitations in topological semimetals, Prog. Surf. Sci., 98, 2023 · doi:10.1016/j.progsurf.2023.100719
[76] Chernodub, MN; Vozmediano, MAH, Chiral sound waves in strained Weyl semimetals, Phys. Rev. Res., 1, 2019 · doi:10.1103/PhysRevResearch.1.032040
[77] Baggioli, M.; Chernodub, MN; Landsteiner, K.; Vozmediano, MAH, Detect Axial Gauge Fields with a Calorimeter, SciPost Phys. Core, 3, 013, 2020 · doi:10.21468/SciPostPhysCore.3.2.013
[78] Baggioli, M.; Goutéraux, B., Colloquium: Hydrodynamics and holography of charge density wave phases, Rev. Mod. Phys., 95, 2023 · doi:10.1103/RevModPhys.95.011001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.