×

Infinite horizon LQG graphon mean field games: explicit Nash values and local minima. (English) Zbl 07878491

Summary: In this study, we generalize the analysis of infinite horizon linear quadratic Gaussian (LQG) mean field games within the framework of graphon mean field games (GMFGs) introduced in P. E. Caines and M. Huang [SIAM J. Control Optim. 59, No. 6, 4373–4399 (2021; Zbl 1479.91035)] over finite horizons. GMFGs are non-uniform generalizations of mean field games where the non-uniformity of agents is characterized by the nodes on which they are located in a network. Under mild assumptions on the structure of the network and parameters of the game, we obtain for almost every node, an explicit analytical expression for the Nash values (i.e. the cost at equilibrium). With additional assumptions, we provide sufficient conditions for nodes to have locally minimal Nash values. We illustrate the results for the uniform attachment network.

MSC:

91A16 Mean field games (aspects of game theory)
49N80 Mean field games and control

Citations:

Zbl 1479.91035
Full Text: DOI

References:

[1] Caines, P. E.; Huang, M., Graphon mean field games and the GMFG equations., (2018 IEEE 57th Conference on Decision and Control. 2018 IEEE 57th Conference on Decision and Control, CDC, 2018, IEEE), 4129-4134
[2] Caines, P. E.; Huang, M., Graphon mean field games and the GMFG equations: \(ɛ\)-Nash equilibria, (2019 IEEE 58th Conference on Decision and Control. 2019 IEEE 58th Conference on Decision and Control, CDC, 2019, IEEE), 286-292
[3] Caines, P. E.; Huang, M., Graphon mean field games and their equations, SIAM J. Control Optim., 59, 6, 4373-4399, 2021 · Zbl 1479.91035
[4] Huang, M.; Caines, P. E.; Malhamé, R. P., Individual and mass behavior in large population stochastic wireless power control problems: central- ized and Nash equilibrium solutions., (2003 IEEE 42nd IEEE Conference on Decision and Control. 2003 IEEE 42nd IEEE Conference on Decision and Control, CDC, 2003, IEEE), 98-103
[5] Huang, M.; Caines, P. E.; Malhamé, R. P., Large-population cost-coupled LQG problems: generalizations to non-uniform individuals, (2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE Cat. No. 04CH37601), 4, 2004, IEEE), 3453-3458
[6] Huang, M.; Malhamé, R. P.; Caines, P. E., Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6, 3, 221-252, 2006 · Zbl 1136.91349
[7] Huang, M.; Caines, P. E.; Malhamé, R. P., Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized \(ɛ\)-Nash equilibria, IEEE Trans. Automat. Control, 52, 9, 1560-1571, 2007 · Zbl 1366.91016
[8] Lasry, J.-M.; Lions, P.-L., Jeux à champ moyen. i-le cas stationnaire, C. R. Math., 343, 9, 619-625, 2006 · Zbl 1153.91009
[9] Lasry, J.-M.; Lions, P.-L., Jeux à champ moyen. II-horizon fini et contrôle optimal, C. R. Math., 343, 10, 679-684, 2006 · Zbl 1153.91010
[10] Lovász, L.; Szegedy, B., Limits of dense graph sequences, J. Combin. Theory Ser. B, 96, 6, 933-957, 2006 · Zbl 1113.05092
[11] Borgs, C.; Chayes, J. T.; Lovász, L.; Sós, V. T.; Vesztergombi, K., Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing, Adv. Math., 219, 6, 1801-1851, 2008 · Zbl 1213.05161
[12] Borgs, C.; Chayes, J. T.; Lovász, L.; Sós, V. T.; Vesztergombi, K., Convergent sequences of dense graphs II. Multiway cuts and statistical physics, Ann. of Math., 176, 1, 151-219, 2012 · Zbl 1247.05124
[13] Lovász, L., Large networks and graph limits, 2012, American Mathematical Soc. · Zbl 1292.05001
[14] F. Parise, A. Ozdaglar, Graphon games, in: Proceedings of the 2019 ACM Conference on Economics and Computation, 2019, pp. 457-458.
[15] Carmona, R.; Cooney, D. B.; Graves, C. V.; Lauriere, M., Stochastic graphon games: I. the static case, Math. Oper. Res., 47, 1, 750-778, 2022 · Zbl 1491.91017
[16] Delarue, F., Mean field games: A toy model on an Erdös-Renyi graph, ESAIM: Proc. Surv., 60, 1-26, 2017 · Zbl 1407.91054
[17] Gao, S.; Foguen-Tchuendom, R.; Caines, P. E., Linear quadratic graphon field games, Commun. Inf. Syst., 21, 3, 341-369, 2021 · Zbl 1491.91035
[18] Lacker, D.; Soret, A., A case study on stochastic games on large graphs in mean field and sparse regimes, Math. Oper. Res., 47, 2, 1530-1565, 2022 · Zbl 1489.91017
[19] Aurell, A.; Carmona, R.; Dayanıklı, G.; Laurière, M., Finite state graphon games with applications to epidemics, Dynam. Games Appl., 12, 1, 49-81, 2022 · Zbl 1489.91052
[20] Aurell, A.; Carmona, R.; Lauriere, M., Stochastic graphon games: II. the linear-quadratic case, Appl. Math. Optim., 85, 3, 39, 2022 · Zbl 1498.91033
[21] Fabian, C.; Cui, K.; Koeppl, H., Mean field games on weighted and directed graphs via colored digraphons, IEEE Control Syst. Lett., 7, 877-882, 2022
[22] Gao, S.; Caines, P. E.; Huang, M., LQG graphon mean field games: Graphon invariant subspaces, (2021 60th IEEE Conference on Decision and Control. 2021 60th IEEE Conference on Decision and Control, CDC, 2021, IEEE), 5253-5260
[23] Foguen-Tchuendom, R.; Caines, P. E.; Huang, M., Critical nodes in graphon mean field games, (2021 60th IEEE Conference on Decision and Control. 2021 60th IEEE Conference on Decision and Control, CDC, 2021, IEEE), 166-170
[24] Gao, S.; Caines, P. E.; Huang, M., LQG graphon mean field games: Analysis via graphon invariant subspaces, IEEE Trans. Automat. Control, 68, 12, 7482-7497, 2023 · Zbl 07810981
[25] Vasal, D.; Mishra, R.; Vishwanath, S., Sequential decomposition of graphon mean field games, (2021 American Control Conference. 2021 American Control Conference, ACC, 2021, IEEE), 730-736
[26] Fabian, C.; Cui, K.; Koeppl, H., Learning sparse graphon mean field games, (International Conference on Artificial Intelligence and Statistics, 2023, PMLR), 4486-4514
[27] Liang, Y.; Wang, B.-C.; Zhang, H., Finite and infinite clusters mean field control problems via graphon theory, (2021 China Automation Congress. 2021 China Automation Congress, CAC, 2021, IEEE), 5986-5990
[28] Hu, Y.; Wei, X.; Yan, J.; Zhang, H., Graphon mean-field control for cooperative multi-agent reinforcement learning, J. Franklin Inst. B, 2023
[29] Bayraktar, E.; Chakraborty, S.; Wu, R., Graphon mean field systems, Ann. Appl. Probab., 33, 5, 3587-3619, 2023 · Zbl 1533.70013
[30] Achdou, Y.; Dao, M.-K.; Ley, O.; Tchou, N., Finite horizon mean field games on networks, Calc. Var. Partial Differential Equations, 59, 1-34, 2020 · Zbl 1448.91023
[31] Cui, K.; KhudaBukhsh, W. R.; Koeppl, H., Hypergraphon mean field games, Chaos, 32, 11, 2022 · Zbl 07879634
[32] Caines, P. E., Embedded vertexon-graphons and embedded GMFG systems, (2022 IEEE 61st Conference on Decision and Control. 2022 IEEE 61st Conference on Decision and Control, CDC, 2022, IEEE), 5550-5557
[33] Foguen-Tchuendom, R.; Gao, S.; Huang, M.; Caines, P. E., Optimal network location in infinite horizon LQG graphon mean field games, (2022 IEEE 61st Conference on Decision and Control. 2022 IEEE 61st Conference on Decision and Control, CDC, 2022, IEEE), 5558-5565
[34] Foguen-Tchuendom, R.; Gao, S.; Caines, P. E., Stationary cost nodes in infinite horizon LQG-GMFGs, IFAC-PapersOnLine, 55, 30, 284-289, 2022
[35] Huang, M.; Caines, P. E.; Malhamé, R. P., The NCE (mean field) principle with locality dependent cost interactions, IEEE Trans. Automat. Control, 55, 12, 2799-2805, 2010 · Zbl 1368.49040
[36] Rudin, W., Real and Complex Analysis, 1987, McGraw-Hill, Inc.: McGraw-Hill, Inc. USA · Zbl 0925.00005
[37] P.E. Caines, R. Foguen-Tchuendom, M. Huang, S. Gao, Critical Nash Value Nodes for Control Affine Embedded Mean Field Games, in: 22nd World Congress of the International Federation of Automatic Control (IFAC), Yokohama, Japan, 2023, pp. 882-887.
[38] S. Gao, Fixed-Point Centrality for Networks, in: Proceedings of the 61th IEEE Conference on Decision and Control, Cancun, Mexico, 2022, pp. 1628-1635.
[39] Avella-Medina, M.; Parise, F.; Schaub, M. T.; Segarra, S., Centrality measures for graphons: Accounting for uncertainty in networks, IEEE Trans. Netw. Sci. Eng., 7, 1, 520-537, 2018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.