×

Finite state graphon games with applications to epidemics. (English) Zbl 1489.91052

Summary: We consider a game for a continuum of non-identical players evolving on a finite state space. Their heterogeneous interactions are represented with a graphon, which can be viewed as the limit of a dense random graph. A player’s transition rates between the states depend on their control and the strength of interaction with the other players. We develop a rigorous mathematical framework for the game and analyze Nash equilibria. We provide a sufficient condition for a Nash equilibrium and prove existence of solutions to a continuum of fully coupled forward-backward ordinary differential equations characterizing Nash equilibria. Moreover, we propose a numerical approach based on machine learning methods and we present experimental results on different applications to compartmental models in epidemiology.

MSC:

91A43 Games involving graphs
91A16 Mean field games (aspects of game theory)
92D30 Epidemiology

References:

[1] The Incubation Period of Coronavirus Disease, (COVID-19) (2020) From publicly reported confirmed cases: estimation and application, Ann Intern Med, 172, 9, 577-582 (2019)
[2] Andersson, H.; Djehiche, B., Limit theorems for multitype epidemics, Stochast Process Appl, 56, 1, 57-75 (1995) · Zbl 0821.92021 · doi:10.1016/0304-4149(94)00059-3
[3] Alexander A, Rene C, Gokce D, Mathieu L (2020) Optimal incentives to mitigate epidemics: a Stackelberg mean field game approach. arXiv:2011.03105
[4] Alexander A, Rene C, Mathieu L (2021) Stochastic graphon games: II. the linear-quadratic case. arXiv:2105.12320
[5] Bayraktar, E.; Cohen, A., Analysis of a finite state many player game using its master equation, SIAM J Control Opt, 56, 5, 3538-3568 (2018) · Zbl 1416.91013 · doi:10.1137/17M113887X
[6] Brezis, H., Functional analysis. Sobolev spaces and partial differential equations (2011), New York: Universitext, Springer, New York · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7
[7] Bryant, VW, A remark on a fixed-point theorem for iterated mappings, Am Math Monthly, 75, 399-400 (1968) · Zbl 0163.44801 · doi:10.2307/2313440
[8] Caines PE, Huang M (2019) Graphon Mean field games and the GMFG equations: \( \epsilon \)-nash equilibria. In: 2019 IEEE 58th conference on decision and control (CDC), pp 286-292
[9] Caines PE, Huang M (2018) Graphon mean field games and the GMFG equations.2018 IEEE conference on decision and control (CDC)
[10] Carmona R, Cooney D, Graves C, Lauriere M (2021) Stochastic graphon games: I. The static case. To appear in Math Oper Res
[11] Carmona, R.; Laurière, M., Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games I: the ergodic case, SIAM J Numer Anal, 59, 3, 1455-1485 (2021) · Zbl 1479.65013 · doi:10.1137/19M1274377
[12] Carmona R., Laurière M (2021) Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II-the finite horizon case. arXiv:1908.01613 · Zbl 1479.65013
[13] Carmona R, Wang P (2016) Finite state mean field games with major and minor players. arXiv:1610.05408
[14] Carmona R, Wang P (2021) A probabilistic approach to extended finite state mean field games. Math Oper Res · Zbl 1468.49043
[15] Cecchin A, Fischer M (2018) Probabilistic approach to finite state mean field games. Appl Math Opt, pp 1-48 · Zbl 1434.60198
[16] Charpentier, A.; Elie, R.; Laurière, M.; Tran, VC, Covid-19 pandemic control: balancing detection policy and lockdown intervention under icu sustainability, Math Modell Nat Phenomena, 15, 57 (2020) · Zbl 1467.92182 · doi:10.1051/mmnp/2020045
[17] Cho S (2020) Mean-field game analysis of sir model with social distancing. arXiv:2005.06758
[18] Choutri, SE; Djehiche, B., Mean-field risk sensitive control and zero-sum games for Markov chains, Bulletin des Sciences Mathématiques, 152, 1-39 (2019) · Zbl 1478.60175 · doi:10.1016/j.bulsci.2019.01.004
[19] Choutri, SE; Djehiche, B.; Tembine, H., Optimal control and zero-sum games for Markov chains of mean-field type, Math Control Related Fields, 9, 3, 571 (2019) · Zbl 1427.60105 · doi:10.3934/mcrf.2019026
[20] Choutri, SE; Hamidou, T., A stochastic maximum principle for Markov chains of mean-field type, Games, 9, 4, 84 (2018) · Zbl 1407.49035 · doi:10.3390/g9040084
[21] Cvitanić, J.; Possamaï, D.; Touzi, N., Dynamic programming approach to principal-agent problems, Finance Stoch, 22, 1, 1-37 (2018) · Zbl 1391.91116 · doi:10.1007/s00780-017-0344-4
[22] Jakša, Cvitanić; Jianfeng, Zhang, Contract theory in continuous-time models (2013), Heidelberg: Springer Finance, Springer, Heidelberg · Zbl 1319.91007
[23] Andrew DD, Edwin P (2012) Superprocesses at Saint-Flour. Springer · Zbl 1245.60002
[24] Delarue F (2017) Mean field games: a toy model on an Erdös-Renyi graph. ESAIM: Procs, 60:1-26 · Zbl 1407.91054
[25] Delmas JF, Dronnier D , Zitt P (2021) Targeted Vaccination Strategies for an Infinite-Dimensional SIS Model. arXiv:2103.10330 · Zbl 1483.92127
[26] Djehiche Boualem, Kaj Ingemar (1995) The rate function for some measure-valued jump processes. The annals of probability, pages 1414-1438 · Zbl 0852.60093
[27] Djehiche, B.; Alexander, Schied, Large deviations for hierarchical systems of interacting jump processes, J Theor Prob, 11, 1, 1-24 (1998) · Zbl 0901.60053 · doi:10.1023/A:1021690707556
[28] Doncel J, Gast N, Gaujal B(2020) A mean-field game analysis of SIR dynamics with vaccination. Prob Eng Inf Sci, pp 1-18
[29] Romuald, Elie; Emma, Hubert; Gabriel, Turinici, Contact rate epidemic control of COVID-19: an equilibrium view, Math Modell Nat Phenomena, 15, 35 (2020) · Zbl 1467.92193 · doi:10.1051/mmnp/2020022
[30] Gao S, Caines PE (2019) Spectral representations of graphons in very large network systems control. 2019 IEEE 58th conference on decision and Control (CDC)
[31] Gao S, Caines PE, Huang M (2020) LQG graphon mean field games. arXiv:2004.00679
[32] Gaujal B, Doncel J, Gast N (2021) Vaccination in a large population: mean field equilibrium versus social optimum. In: netgcoop’20, Cargèse, France, September
[33] Gomes, AD; Mohr, J.; Rigao, Souza Rafael, Discrete time, finite state space mean field games, Journal de mathématiques pures et appliquées, 93, 3, 308-328 (2010) · Zbl 1192.91028 · doi:10.1016/j.matpur.2009.10.010
[34] Gomes Diogo, A.; Joana, Mohr; Rigao, Souza Rafael, Continuous time finite state mean field games, Appl Math Opt, 68, 1, 99-143 (2013) · Zbl 1283.91016 · doi:10.1007/s00245-013-9202-8
[35] Grigelionis, B., On representation of integer-valued random measures by means of stochastic integrals with respect to the Poisson measure, Lithuanian Math J, 1, 93-108 (1971) · Zbl 0239.60050 · doi:10.15388/LMJ.1971.20963
[36] Huang, M.; Malhamé, RP; Caines Peter, E., Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun Inf Syst, 6, 3, 221-252 (2006) · Zbl 1136.91349 · doi:10.4310/CIS.2006.v6.n3.a5
[37] Hubert E, Mastrolia T, Possamaï D, Warin X (2020) Incentives, lockdown, and testing: from Thucydides’s analysis to the COVID-19 pandemic. arXiv:2009.00484
[38] Hubert, E.; Turinici, G., Nash-MFG equilibrium in a SIR model with time dependent newborn vaccination, Ricerche di Matematica, 67, 1, 227-246 (2018) · Zbl 1395.92150 · doi:10.1007/s11587-018-0365-0
[39] Hytönen T, Van Neerven J, Veraar M, Weis L (2016) Anal Banach spaces, vol 12. Springer · Zbl 1366.46001
[40] Keeling, JM; Eames, TDK, Networks and epidemic models, J R Soc Interface, 2, 4, 295-307 (2005) · doi:10.1098/rsif.2005.0051
[41] Keliger D, Horvath I, Takacs B (2020) Local-density dependent Markov processes on graphons with epidemiological applications. arXiv:2008.08109
[42] Kohlmann M, Zhou XY (2000) Relationship between backward stochastic differential equations and stochastic controls: a linear-quadratic approach. SIAM J Control Optim 38(5):1392-1407 · Zbl 0960.60052
[43] Kolokoltsov, VN, Nonlinear Markov games on a finite state space (mean-field and binary interactions), Int J Stat Prob, 1, 1, 77-91 (2012) · doi:10.5539/ijsp.v1n1p77
[44] Laguzet, L.; Turinici, G., Individual vaccination as Nash equilibrium in a SIR model with application to the 2009-2010 influenza A (H1N1) epidemic in France, Bull Math Biol, 77, 10, 1955-1984 (2015) · Zbl 1345.92146 · doi:10.1007/s11538-015-0111-7
[45] Laguzet L, Turinici G, Yahiaoui G (2016) Equilibrium in an individual-societal SIR vaccination model in presence of discounting and finite vaccination capacity. In: New trends in differential equations, control theory and optimization: proceedings of the 8th congress of Romanian mathematicians, pp 201-214. World Scientific · Zbl 1349.92141
[46] Lasry JM, Lions PL (2006) Jeux à champ moyen. i-le cas stationnaire. Comptes Rendus Mathématique 343(9):619-625 · Zbl 1153.91009
[47] Lasry JM, Lions PL (2006) Jeux à champ moyen. ii-horizon fini et contrôle optimal. Comptes Rendus Mathématique 343(10):679-684 · Zbl 1153.91010
[48] Lee W, Liu S, Tembine H, Li W, Osher S (2020) Controlling propagation of epidemics via mean-field games. arXib:2006.01249 · Zbl 1458.92075
[49] László, Lovász, Large networks and graph limits (2012), American Mathematical Society, Providence, RI: American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI · Zbl 1292.05001
[50] Parise F, Ozdaglar AE (2019) Graphon games: a statistical framework for network games and interventions. SSRN Electron J · Zbl 1419.91160
[51] Francesco, Salvarani; Gabriel, Turinici, Optimal individual strategies for influenza vaccines with imperfect efficacy and durability of protection, Mathematical Biosciences & Engineering, 15, 3, 629 (2018) · Zbl 1406.92364 · doi:10.3934/mbe.2018028
[52] Skorokhod AV (1982) Studies in the theory of random processes, vol 7021. Courier Dover Publications
[53] Sun, Y., A theory of hyperfinite processes: the complete removal of individual uncertainty via exact LLN, Math. Econom, 29, 4, 419-503 (1998) · Zbl 0957.91076 · doi:10.1016/S0304-4068(97)00036-0
[54] Sun, Y., The exact law of large numbers via Fubini extension and characterization of insurable risks, J Econom Theory, 126, 1, 31-69 (2006) · Zbl 1108.60025 · doi:10.1016/j.jet.2004.10.005
[55] Sun, Y.; Zhang, Y., Individual risk and Lebesgue extension without aggregate uncertainty, J Econom Theory, 144, 1, 432-443 (2009) · Zbl 1157.91385 · doi:10.1016/j.jet.2008.05.001
[56] Tembine, T., Covid-19: data-driven mean-field-type game perspective, Games, 11, 4, 51 (2020) · Zbl 1457.91062 · doi:10.3390/g11040051
[57] Vizuete, R.; Frasca, P.; Frasca, F., Graphon-based sensitivity analysis of SIS epidemics, IEEE Control Syst Lett, 4, 3, 542-547 (2020) · doi:10.1109/LCSYS.2020.2971021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.