×

Kinetic energy-free Hartree-Fock equations: an integral formulation. (English) Zbl 1516.65076

The authors of this work designed and implemented a solver for Hartree-Fock (HF) equations which are considered as cornerstones of quantum chemistry. The equations are reformulated as coupled integral equations therefore making it possible to find the solution without implementing a differential operator. Convolution and derivative operators related to Multiwavelet (MW) framework were discussed and the descriptions of the Fock operator and iterative solution of the minimization problem are given. Usual strategies for obtaining the minimizer involves a finite basis representation of blocks of the Fock matrix. An integral representation of the HF equations is considered due to the concerns involving the use of differential operators within the MW approach. A detailed description of the integral representation that doesn’t require the explicit use of the kinetic energy operator and gives rise to development of efficient iterative algorithms is given. Extension of the procedure for a many-electron system is also discussed. Calculation of Fock matrix and energy, orbital orthonormalization, as well as the implementation details and the algorithm are provided. Numerical results with hydrogen and beryllium atoms demonstrating robust convergence patterns are presented.

MSC:

65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65T60 Numerical methods for wavelets
65R20 Numerical methods for integral equations
65K10 Numerical optimization and variational techniques
65H10 Numerical computation of solutions to systems of equations
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
82M36 Computational density functional analysis in statistical mechanics
81V45 Atomic physics
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q40 PDEs in connection with quantum mechanics

References:

[1] Helgaker, T.; Jorgensen, P.; Olsen, J., Molecular Electronic-Structure Theory (2008), New York: Wiley, New York
[2] Moncrie, D.; Wilson, S., Computational linear dependence in molecular electronic structure calculations using universal basis sets, Int. J. Quantum Chem., 101, 363-371 (2005) · doi:10.1002/qua.20275
[3] Kresse, G.; Furthmuller, J., Effcient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169-11186 (1996) · doi:10.1103/PhysRevB.54.11169
[4] Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, 7892-7895 (1990) · doi:10.1103/PhysRevB.41.7892
[5] Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758-1775 (1999) · doi:10.1103/PhysRevB.59.1758
[6] Singh, DJ; Nordstrom, L., Planewaves, Pseudopotentials, and the LAPW Method (2006), New York: Springer, New York
[7] Sun, GY, Performance of the Vienna ab initio simulation package (VASP) in chemical applications, J. Mol. Struct. Theochem, 624, 37-45 (2003) · doi:10.1016/S0166-1280(02)00733-9
[8] Briggs, E.; Sullivan, D.; Bernholc, J., Large-scale electronic-structure calculations with multigrid acceleration, Phys. Rev. B, 52, R5471-R5474 (1995) · doi:10.1103/PhysRevB.52.R5471
[9] Pask, JE; Sterne, PA, Finite element methods in ab initio electronic structure calculations, Mod. Simul. Mater. Sci. Eng., 13, R71 (2005) · doi:10.1088/0965-0393/13/3/R01
[10] Genovese, L., Daubechies wavelets as a basis set for density functional pseudopotential calculations, J. Chem. Phys., 129 (2008) · doi:10.1063/1.2949547
[11] Pipek, J.; Nagy, S., The kinetic energy operator in the subspaces of wavelet analysis, J. Math. Chem., 46, 261-282 (2009) · Zbl 1195.81015 · doi:10.1007/s10910-008-9458-4
[12] Harrison, R., Multiresolution quantum chemistry: basic theory and initial applications, J. Chem. Phys., 121, 11587 (2004) · doi:10.1063/1.1791051
[13] Yanai, T., Multiresolution quantum chemistry in multiwavelet bases: Hartree-Fock exchange, J. Chem. Phys., 121, 6680 (2004) · doi:10.1063/1.1790931
[14] Alpert, B., Adaptive solution of partial differential equations in multiwavelet bases, J. Comput. Phys., 182, 149-190 (2002) · Zbl 1015.65046 · doi:10.1006/jcph.2002.7160
[15] Alpert, BK, A class of bases in \(L^{2\, }\) for the sparse representation of integral operators, SIAM J. Math. Anal., 24, 246-262 (1999) · Zbl 0764.42017 · doi:10.1137/0524016
[16] F.A. Bischoff, R.J. Harrison, E.F. Valeev, Computing many-body wave functions with guaranteed precision: the first-order Møller-Plesset wave function for the ground state of Helium atom. J. Chem. Phys. 104103 (2012)
[17] Durdek, A., Adaptive order polynomial algorithm in a multiwavelet representation scheme, Appl. Num. Math., 92, 40-53 (2015) · Zbl 1321.65200 · doi:10.1016/j.apnum.2014.12.006
[18] Beylkin, G.; Harrison, RJ; Jordan, KE, Singular operators in multi-wavelet bases, IBM J. Res. Dev., 48, 161-171 (2004) · doi:10.1147/rd.482.0161
[19] Beylkin, G., Fast adaptive algorithms in the non-standard form for multidimensional problems, Appl. Comput. Harmon. Anal., 24, 354-377 (2008) · Zbl 1139.65078 · doi:10.1016/j.acha.2007.08.001
[20] Høst, S., The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices, J. Chem. Phys., 129 (2008) · doi:10.1063/1.2974099
[21] Frediani, L., Fully adaptive algorithms for multivariate integral equations using the non-standard form and multiwavelets with applications to the Poisson and bound-state Helmholtz kernels in three dimensions, Mol. Phys., 111, 1143-1160 (2013) · doi:10.1080/00268976.2013.810793
[22] Beylkin, G.; Cheruvu, V.; Perez, F., Fast adaptive algorithms in the non-standard form for multidimensional problems, Appl. Comput. Harmon. Anal., 24, 354-377 (2008) · Zbl 1139.65078 · doi:10.1016/j.acha.2007.08.001
[23] Beylkin, G.; Mohlenkamp, M., Numerical operator calculus in higher dimensions, Proc. Natl. Acad. Sci., 99, 10246 (2002) · Zbl 1008.65026 · doi:10.1073/pnas.112329799
[24] Gines, D.; Beylkin, G.; Dunn, J., LU factorization of non-standard forms and direct multiresolution solvers, Appl. Comput. Harmon. Anal., 5, 156-201 (1998) · Zbl 0914.65017 · doi:10.1006/acha.1997.0227
[25] Jensen, SR, Linear scaling Coulomb interaction in the multiwavelet basis, a parallel implementation, Int. J. Model Simul. Sci. Comput., 05, 1441003 (2014) · doi:10.1142/S1793962314410037
[26] Anderson, J., On derivatives of smooth functions represented in multiwavelet bases, J. Comput. Phys. X, 4 (2019) · Zbl 07785517
[27] Bischoff, FA, Regularizing the molecular potential in electronic structure calculations. I. SCF methods, J. Chem. Phys., 141 (2014) · doi:10.1063/1.4901021
[28] Jensen, F., Introduction to Computational Chemistry (2013), New York: Wiley, New York
[29] Schneider, R., Direct minimization for calculating invariant subspaces in density functional computations of the electronic structure, J. Comput. Math., 27, 360-387 (2008) · Zbl 1212.81001
[30] Pulay, P., Convergence acceleration of iterative sequences. The case of SCF iteration, Chem. Phys. Lett., 73, 393-398 (1980) · doi:10.1016/0009-2614(80)80396-4
[31] Kalos, MH, Monte Carlo calculations of the ground state of three-and four-body nuclei, Phys. Rev., 128, 1791 (1962) · doi:10.1103/PhysRev.128.1791
[32] Löwdin, P-O, On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals, J. Chem. Phys., 18, 365-375 (1950) · doi:10.1063/1.1747632
[33] Boys, SF, Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another, Rev. Mod. Phys., 32, 296-299 (1960) · doi:10.1103/RevModPhys.32.296
[34] Foster, JM; Boys, SF, Canonical configurational interaction procedure, Rev. Mod. Phys., 32, 300-302 (1960) · doi:10.1103/RevModPhys.32.300
[35] R. Bast, et al., MRCPP: MultiResolution computation program package (2021). https://github.com/MRChemSoft/mrcpp/tree/release/1.4,version v1.4.0.
[36] E. Battistella, et al., VAMPyR: very accurate multiresolution python routines (2021). https://github.com MRChemSoft/vampyr/tree/v0.2rc0,versionv0.2rc0.
[37] M. Bjørgve, S. R. Jensen, Kinetic-energy-free algorithms for atoms. https://github.com/MRChemSoft/Kinetic-energy-free-HF
[38] The binder project. https://mybinder.org/
[39] Harrison, R., Krylov subspace accelerated inexact Newton method for linear and nonlinear equations, J. Comput. Chem., 25, 328-334 (2004) · doi:10.1002/jcc.10108
[40] Koga, T., Improved Roothaan-Hartree-Fock wave functions for atoms and ions with \(N \le 54\), J. Chem. Phys., 103, 3000-3005 (1995) · doi:10.1063/1.470488
[41] Parr, RG; Yang, W., Density-functional theory of the electronic structure of molecules, Annu. Rev. Phys. Chem., 46, 701-728 (1995) · doi:10.1146/annurev.pc.46.100195.003413
[42] Allen, L., Publishing: credit where credit is due, Nature, 508, 312-313 (2014) · doi:10.1038/508312a
[43] Brand, A., Beyond authorship: attribution, contribution, collaboration, and credit, Learn. Publ., 28, 151-155 (2015) · doi:10.1087/20150211
[44] Researchers are embracing visual tools to give fair credit for work on papers, pp. 5-3 (2021). https://www.natureindex.com/news-blog/researchers-embracing visual-tools-contribution-matrix-give-fair-credit-authorsscientific-papers
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.