×

On derivatives of smooth functions represented in multiwavelet bases. (English) Zbl 07785517

Summary: We construct high-order derivative operators for smooth functions represented via discontinuous multiwavelet bases. The need for such operators arises in order to avoid artifacts when computing functionals involving high-order derivatives of solutions of integral equations. Previously high-order derivatives had to be formed by repeated application of a first-derivative operator that, while uniquely defined, has a spectral norm that grows quadratically with polynomial order and, hence, greatly amplifies numerical noise (truncation error) in the multiwavelet computation. The new constructions proceed via least-squares projection onto smooth bases and provide substantially improved numerical properties as well as permitting direct construction of high-order derivatives. We employ either b-splines or bandlimited exponentials as the intermediate smooth basis, with the former maintaining the concept of approximation order while the latter preserves the pure imaginary spectrum of the first-derivative operator and provides more direct control over the bandlimit and accuracy of computation. We demonstrate the properties of these new operators via several numerical tests as well as application to a problem in nuclear physics.

MSC:

65Dxx Numerical approximation and computational geometry (primarily algorithms)
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
41Axx Approximations and expansions

References:

[1] Alpert, B., A class of bases in \(L^2\) for the sparse representation of integral operators. SIAM J. Math. Anal., 1, 246-262 (1993) · Zbl 0764.42017
[2] Alpert, B.; Beylkin, G.; Coifman, R.; Rokhlin, V., Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Sci. Comput., 1, 159-184 (1993) · Zbl 0771.65088
[3] Alpert, B.; Beylkin, G.; Gines, D.; Vozovoi, L., Adaptive solution of partial differential equations in multiwavelet bases. J. Comput. Phys., 1, 149-190 (2002) · Zbl 1015.65046
[4] Beylkin, G.; Coifman, R.; Rokhlin, V., Fast wavelet transforms and numerical algorithms, I. Commun. Pure Appl. Math., 2, 141-183 (August 1989), Yale Univ. Technical Report YALEU/DCS/RR-696 · Zbl 0722.65022
[5] Beylkin, G.; Monzón, L., On generalized Gaussian quadratures for exponentials and their applications. Appl. Comput. Harmon. Anal., 3, 332-373 (2002) · Zbl 1015.65012
[6] Beylkin, G.; Monzón, L., Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete Contin. Dyn. Syst., 8, 4077-4100 (2016) · Zbl 1333.65020
[7] Beylkin, G.; Sandberg, K., Wave propagation using bases for bandlimited functions. Wave Motion, 3, 263-291 (2005) · Zbl 1189.76456
[8] Beylkin, G.; Sandberg, K., ODE solvers using bandlimited approximations. J. Comput. Phys., 156-171 (2014), see also · Zbl 1349.65692
[9] Bischoff, F.; Harrison, R.; Valeev, E., Computing many-body wave functions with guaranteed precision: the first-order moller-plesset wave function for the ground state of helium atom. J. Chem. Phys. (2012)
[10] Caplan, M. E.; Horowitz. Colloquium, C. J., Astromaterial science and nuclear pasta. Rev. Mod. Phys., 4 (Oct. 2017)
[11] Chui, C., An Introduction to Wavelets (1992), Academic Press: Academic Press Boston, MA · Zbl 0925.42016
[12] Daubechies, I., Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math., 909-996 (1988) · Zbl 0644.42026
[13] Donoho, D. L.; Dyn, N.; Levin, D.; Thomas, P. Y., Smooth multiwavelet duals of alpert bases by moment-interpolating refinement. Appl. Comput. Harmon. Anal., 2, 166-203 (2000) · Zbl 0967.65120
[14] Fann, G.; Pei, J.; Harrison, R. J.; Jia, J.; Ou, M.; Nazarewciz, W.; Schunck, N.; Shelton, W. A., Fast multiresolution methods for density functional theory in nuclear physics. J. Phys. Conf. Ser. (2009)
[15] Federbush, P., A mass zero cluster expansion. Commun. Math. Phys., 327-340 (1981)
[16] Fosso-Tande, J.; Harrison, R., Implicit solvation models in a multiresolution multiwavelet basis. Chem. Phys. Lett., 179-184 (2013)
[17] Haar, A., Zur Theorie der orthogonalen Funktionensysteme. Math. Ann., 331-371 (1910) · JFM 41.0469.03
[18] Harrison, R.; Fann, G.; Yanai, T.; Beylkin, G., Multiresolution quantum chemistry in multiwavelet bases, 103-110
[19] Harrison, R.; Fann, G.; Yanai, T.; Gan, Z.; Beylkin, G., Multiresolution Quantum Chemistry: Basic Theory and Initial Applications (December 2003), Univ. of Colorado, APPM preprint 516
[20] Harrison, R.; Fann, G.; Yanai, T.; Gan, Z.; Beylkin, G., Multiresolution quantum chemistry: basic theory and initial applications. J. Chem. Phys., 23, 11587-11598 (2004)
[21] Harrison, R. J.; Beylkin, G.; Bischoff, F. A.; Calvin, J. A.; Fann, G. I.; Fosso-Tande, J.; Galindo, D.; Hammond, J.; Hartman-Baker, R.; Hill, J. C., Madness: a multiresolution, adaptive numerical environment for scientific simulation. SIAM J. Sci. Comput., 5, S123-S142 (2016), see also arXiv preprint · Zbl 1365.65327
[22] Harten, A., High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 3, 357-393 (1983) · Zbl 0565.65050
[23] Harten, A., High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 2, 260-278 (1997) · Zbl 0890.65096
[24] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R., Uniformly high order accurate essentially non-oscillatory schemes, iii, 218-290
[25] Jensen, S. R.; Flå, T.; Jonsson, D.; Monstad, R. S.; Ruud, K.; Frediani, L., Magnetic properties with multiwavelets and dft: the complete basis set limit achieved. Phys. Chem. Chem. Phys., 21145-21161 (2016)
[26] Kong, W. Y.; Rokhlin, V., A new class of highly accurate differentiation schemes based on the prolate spheroidal wave functions. Appl. Comput. Harmon. Anal., 2, 226-260 (2012) · Zbl 1247.65029
[27] Landau, H. J.; Pollak, H. O., Prolate spheroidal wave functions, Fourier analysis and uncertainty II. Bell Syst. Tech. J., 65-84 (1961) · Zbl 0184.08602
[28] Landau, H. J.; Pollak, H. O., Prolate spheroidal wave functions, Fourier analysis and uncertainty III. Bell Syst. Tech. J., 1295-1336 (1962) · Zbl 0184.08603
[29] Liu, X.-D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes. J. Comput. Phys., 1, 200-212 (1994) · Zbl 0811.65076
[30] Parr, R. G.; Yang, W., Density-Functional Theory of Atoms and Molecules. The International Series of monographs on Chemistry (1989), Oxford Univ. Press: Oxford Univ. Press New York
[31] Pei, J.; Stoitsov, M.; Fann, G.; Nazarewicz, W.; Schunck, N.; Xu, F., Deformed coordinate-space Hartree-Fock-Bogoliubov approach to weakly bound nuclei and large deformations. Phys. Rev. C (2008)
[32] Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Y.; Thornton, S., Adaptive multi-resolution 3d hartree-fock-bogoliubov solver for nuclear structure. Phys. Rev. C (Aug. 2014)
[33] Reynolds, M.; Beylkin, G.; Monzón, L., On generalized Gaussian quadratures for bandlimited exponentials. Appl. Comput. Harmon. Anal., 3, 352-365 (2013) · Zbl 1264.65032
[34] Sagert, I.; Fann, G. I.; Fattoyev, F. J.; Postnikov, S.; Horowitz, C. J., Quantum simulations of nuclei and nuclear pasta with the multiresolution adaptive numerical environment for scientific simulations. Phys. Rev. C, 5 (May 2016)
[35] Sandberg, K.; Wojciechowski, K., The EPS method: a new method for constructing pseudospectral derivative operators. J. Comput. Phys., 15, 5836-5863 (2011) · Zbl 1220.65029
[36] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 2, 439-471 (1988) · Zbl 0653.65072
[37] Slepian, D., Prolate spheroidal wave functions, Fourier analysis and uncertainty IV. Extensions, to many dimensions; generalized prolate spheroidal functions. Bell Syst. Tech. J., 3009-3057 (1964) · Zbl 0184.08604
[38] Slepian, D., Some asymptotic expansions for prolate spheroidal wave functions. J. Math. Phys., 99-140 (1965) · Zbl 0128.29601
[39] Slepian, D., Prolate spheroidal wave functions, Fourier analysis and uncertainty V. The discrete case. Bell Syst. Tech. J., 1371-1430 (1978) · Zbl 0378.33006
[40] Slepian, D., Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev., 3, 379-393 (1983) · Zbl 0571.94004
[41] Slepian, D.; Pollak, H. O., Prolate spheroidal wave functions, Fourier analysis and uncertainty I. Bell Syst. Tech. J., 43-63 (1961) · Zbl 0184.08601
[42] Takacs, S.; Takacs, T., Approximation error estimates and inverse inequalities for b-splines of maximum smoothness. Math. Models Methods Appl. Sci., 1411-1445 (2016) · Zbl 1339.41012
[43] Vence, N.; Harrison, R.; Krstic, P., Attosecond electron dynamics: a multiresolution approach. Phys. Rev. A, 3 (2012)
[44] Xiao, H.; Rokhlin, V.; Yarvin, N., Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Probl., 4, 805-838 (2001) · Zbl 0991.65024
[45] Yanai, T.; Fann, G.; Gan, Z.; Harrison, R.; Beylkin, G., Multiresolution quantum chemistry: analytic derivatives for Hartree-Fock and density functional theory. J. Chem. Phys., 7, 2866-2876 (2004)
[46] Yanai, T.; Fann, G.; Gan, Z.; Harrison, R.; Beylkin, G., Multiresolution quantum chemistry: Hartree-Fock exchange. J. Chem. Phys., 14, 6680-6688 (2004)
[47] Yanai, T.; Fann, G. I.; Beylkin, G.; Harrison, R. J., Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent hartree-fock and density functional theory via linear response. Phys. Chem. Chem. Phys. (2015)
[48] Yanai, T.; Harrison, R.; Handy, N., Multiresolution quantum chemistry in multiwavelet bases: time-dependent density functional theory with asymptotically corrected potentials in local density and generalized gradient approximations. Mol. Phys. (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.