×

Floquet stability of periodically stationary pulses in a short-pulse fiber laser. (English) Zbl 1540.35020

Summary: The quantitative modeling and design of modern short-pulse fiber lasers cannot be performed with averaged models because of large variations in the pulse parameters within each round trip. Instead, lumped models obtained by concatenating models for the various components of the laser are required. Since the optical pulses in lumped models are periodic, their linear stability is investigated using the monodromy operator, which is the linearization of the roundtrip operator about the pulse. A gradient-based optimization method is developed to discover periodic pulses. The computation of the gradient of the objective function involves numerical computation of the action of both the roundtrip operator and the adjoint of the monodromy operator. A novel Fourier split-step method is introduced to compute solutions of the linearization of the nonlinear, nonlocal, stiff equation that models optical propagation in the fiber amplifier. This method is derived by linearizing the two solution operators in a split-step method for the nonlinear equation. The spectrum of the monodromy operator consists of the essential spectrum, for which there is an analytical formula, and the eigenvalues. There is a multiplicity two eigenvalue at \(\lambda=1\), which is due to phase and translation invariance. The remaining eigenvalues are determined from a matrix discretization of the monodromy operator. Simulation results verify the accuracy of the numerical methods; show examples of periodically stationary pulses, their spectra, and their eigenfunctions; and discuss their stability.

MSC:

35B10 Periodic solutions to PDEs
35B35 Stability in context of PDEs
35Q56 Ginzburg-Landau equations
37L15 Stability problems for infinite-dimensional dissipative dynamical systems
47D06 One-parameter semigroups and linear evolution equations
78A60 Lasers, masers, optical bistability, nonlinear optics

Software:

pde2path
Full Text: DOI

References:

[1] Agrawal, G. P., Nonlinear Fiber Optics, Elsevier, New York, 2006.
[2] Ambrose, D. M. and Wilkening, J., Computing time-periodic solutions of nonlinear systems of partial differential equations, in Hyperbolic Problems: Theory, Numerics and Applications, World Scientific, River Edge, NJ, 2012, pp. 273-280. · Zbl 1284.35035
[3] Bao, W., Jin, S., and Markowich, P. A., On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., 175 (2002), pp. 487-524. · Zbl 1006.65112
[4] Barashenkov, I. and Zemlyanaya, E., Oscillatory instabilities of gap solitons: A numerical study, Comput. Phys. Commun., 126 (2000), pp. 22-27. · Zbl 0964.65078
[5] Boisgérault, S., Complex Analysis and Applications, https://eul.ink/complex-analysis, 2019. · Zbl 1423.30001
[6] Bridges, T. J., Derks, G., and Gottwald, G., Stability and instability of solitary waves of the fifth-order KdV equation: A numerical framework, Phys. D, 172 (2002), pp. 190-216. · Zbl 1047.37053
[7] Cuevas-Maraver, J., Kevrekidis, P. G., Frantzeskakis, D. J., Karachalios, N. I., Haragus, M., and James, G., Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves, Phys. Rev. E, 96 (2017), 012202.
[8] Diddams, S. A., The evolving optical frequency comb, J. Opt. Soc. Am. B, 27 (2010), pp. B51-B62.
[9] Fermann, M. E., Kruglov, V. I., Thomsen, B. C., Dudley, J. M., and Harvey, J. D., Self-similar propagation and amplification of parabolic pulses in optical fibers, Phys. Rev. Lett., 84 (2000), pp. 6010-6013.
[10] Fornberg, B., Numerical differentiation of analytic functions, ACM Trans. Math. Software, 7 (1981), pp. 512-526. · Zbl 0465.65012
[11] Fu, W., Wright, L. G., Sidorenko, P., Backus, S., and Wise, F. W., Several new directions for ultrafast fiber lasers, Opt. Express, 26 (2018), pp. 9432-9463.
[12] Giles, R. and Desurvire, E., Modeling erbium-doped fiber amplifiers, J. Lightwave Technol., 9 (1991), pp. 271-283.
[13] Hartl, I., Schibli, T. R., Marcinkevicius, A., Yost, D. C., Hudson, D. D., Fermann, M. E., and Ye, J., Cavity-enhanced similariton Yb-fiber laser frequency comb: \(3\times 10^{14}\, W/cm^2\) peak intensity at 136 MHz, Opt. Lett., 32 (2007), pp. 2870-2872.
[14] Haus, H. A., Theory of mode locking with a fast saturable absorber, J. Appl. Phys., 46 (1975), pp. 3049-3058.
[15] Haus, H. A., Mode locking of lasers, IEEE J. Sel. Top. Quantum Electron., 6 (2000), pp. 1173-1185.
[16] Haus, H. A. and Mecozzi, A., Noise of mode-locked lasers, J. Quantum Electron., 29 (1993), pp. 983-996.
[17] Humpherys, J. and Lytle, J., Root following in Evans function computation, SIAM J. Numer. Anal., 53 (2015), pp. 2329-2346. · Zbl 1326.65157
[18] Kapitula, T., Kutz, N., and Sandstede, B., The Evans function for nonlocal equations, Indiana Univ. Math. J., 53 (2004), pp. 1095-1126. · Zbl 1059.35137
[19] Kapitula, T. and Sandstede, B., Instability mechanism for bright solitary-wave solutions to the cubic-quintic Ginzburg-Landau equation, J. Opt. Soc. Am. B, 15 (1998), pp. 2757-2762.
[20] Kapitula, T. and Sandstede, B., Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations, Phys. D, 124 (1998), pp. 58-103. · Zbl 0935.35150
[21] Kaup, D., Perturbation theory for solitons in optical fibers, Phys. Rev. A, 42 (1990), pp. 5689-5694.
[22] Kevrekidis, P. G., The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives, Vol. 232, Springer Science & Business Media, New York, 2009. · Zbl 1169.35004
[23] Kim, H., Qin, P., Song, Y., Yang, H., Shin, J., Kim, C., Jung, K., Wang, C., and Kim, J., Sub-20-attosecond timing jitter mode-locked fiber lasers, IEEE J. Sel. Top. Quantum Electron, 20 (2014), pp. 260-267.
[24] Kutz, J. N., Mode-locked soliton lasers, SIAM Rev., 48 (2006), pp. 629-678. · Zbl 1121.35130
[25] Lu, J. and Marzuola, J., Strang splitting methods for a quasilinear Schrödinger equation: Convergence, instability, and dynamics, Commun. Math. Sci., 13 (2015), pp. 1051-1074. · Zbl 1326.35349
[26] Lubich, C., On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comput., 77 (2008), pp. 2141-2153. · Zbl 1198.65186
[27] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Springer Science & Business Media, New York, 2012.
[28] Lyness, J. N. and Moler, C. B., Numerical differentiation of analytic functions, SIAM J. Numer. Anal., 4 (1967), pp. 202-210. · Zbl 0155.48003
[29] Martins, J. R., Sturdza, P., and Alonso, J. J., The complex-step derivative approximation, ACM Trans. Math. Software, 29 (2003), pp. 245-262. · Zbl 1072.65027
[30] Menyuk, C. R. and Wang, S., Spectral methods for determining the stability and noise performance of passively modelocked lasers, Nanophotonics, 5 (2016), pp. 332-350.
[31] Mollenauer, L. F. and Stolen, R. H., The soliton laser, Opt. Lett., 9 (1984), pp. 13-15.
[32] Mu, R.-M., Grigoryan, V., Menyuk, C. R., Carter, G., and Jacob, J., Comparison of theory and experiment for dispersion-managed solitons in a recirculating fiber loop, IEEE J. Sel. Top. Quantum Electron., 6 (2000), pp. 248-257.
[33] Muslu, G. and Erbay, H., A split-step Fourier method for the complex modified Korteweg-de Vries equation, Comput. Math. Appl., 45 (2003), pp. 503-514. · Zbl 1035.65111
[34] Paschotta, R., Noise of mode-locked lasers (part I): Numerical model, Appl. Phys. B Lasers Opt., 79 (2004), pp. 153-162.
[35] Paschotta, R., Noise of mode-locked lasers (part II): Timing jitter and other fluctuations, Appl. Phys. B Lasers Opt., 79 (2004), pp. 163-173.
[36] Rochette, M., Chen, L. R., Sun, K., and Hernandez-Cordero, J., Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering, IEEE Photonics Tech. Lett., 20 (2008), pp. 1497-1499.
[37] Shen, Y., Zweck, J., Wang, S., and Menyuk, C. R., Spectra of short pulse solutions of the cubic-quintic complex Ginzburg-Landau equation near zero dispersion, Stud. Appl. Math., 137 (2016), pp. 238-255. · Zbl 1366.35176
[38] Shinglot, V. and Zweck, J., The essential spectrum of periodically-stationary pulses in lumped models of short-pulse fiber lasers, Stud. Appl. Math., 150 (2023), pp. 218-253. · Zbl 07778765
[39] Shinglot, V., Zweck, J., and Menyuk, C., The continuous spectrum of periodically stationary pulses in a stretched pulse laser, Opt. Lett., 47 (2022), pp. 1490-1493.
[40] Sidorenko, P., Fu, W., Wright, L. G., Olivier, M., and Wise, F. W., Self-seeded, multi-megawatt, Mamyshev oscillator, Opt. Express, 43 (2018), pp. 2672-2675.
[41] Sinkin, O. V., Holzlöhner, R., Zweck, J., and Menyuk, C. R., Optimization of the split-step Fourier method in modeling optical-fiber communications systems, J. Lightwave Technol., 21 (2003), pp. 61-68.
[42] Tamura, K., Ippen, E. P., Haus, H. A., and Nelson, L. E., 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser, Opt. Lett., 18 (1993), pp. 1080-1082.
[43] Tarasov, N., Perego, A. M., Churkin, D. V., Staliunas, K., and Turitsyn, S. K., Mode-locking via dissipative Faraday instability, Nat. Commun., 7 (2016), pp. 1-5.
[44] Teschl, G., Ordinary Differential Equations and Dynamical Systems, Vol. 140, American Mathematical Society, Providence, RI, 2012. · Zbl 1263.34002
[45] Turitsyn, S. K., Bale, B. G., and Fedoruk, M. P., Dispersion-managed solitons in fibre systems and lasers, Phys. Rep., 521 (2012), pp. 135-203.
[46] Uecker, H., Hopf bifurcation and time periodic orbits with pde2path—Algorithms and applications, Commun. Comput. Phys., 25 (2019), pp. 812-852. · Zbl 07417517
[47] Wang, S., Docherty, A., Marks, B. S., and Menyuk, C. R., Comparison of numerical methods for modeling laser mode locking with saturable gain, J. Opt. Soc. Am. B, 30 (2013), pp. 3064-3074.
[48] Wang, S., Docherty, A., Marks, B. S., and Menyuk, C. R., Boundary tracking algorithms for determining the stability of mode-locked pulses, J. Opt. Soc. Am. B, 31 (2014), pp. 2914-2930.
[49] Wang, S., Marks, B. S., and Menyuk, C. R., Comparison of models of fast saturable absorption in passively modelocked lasers, Opt. Express, 24 (2016), pp. 20228-20244.
[50] Weideman, J. and Herbst, B., Split-step methods for the solution of the nonlinear schrödinger equation, SIAM J. Numer. Anal., 23 (1986), pp. 485-507. · Zbl 0597.76012
[51] Wright, S. and Nocedal, J., Numerical Optimization, Springer Science & BusinessMedia, New York, 2006. · Zbl 1104.65059
[52] Yang, J., Nonlinear Waves in Integrable and Nonintegrable Systems, SIAM, Philadelphia, 2010. · Zbl 1234.35006
[53] Zweck, J., Latushkin, Y., Marzuola, J., and Jones, C., The essential spectrum of periodically stationary solutions of the complex Ginzburg-Landau equation, J. Evol. Equ., 21 (2021), pp. 3313-3329. · Zbl 1483.35234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.