×

Spectra of short pulse solutions of the cubic-quintic complex Ginzburg-Landau equation near zero dispersion. (English) Zbl 1366.35176

The authors describe computational methods to efficiently determine stationary solutions of the cubic-quintic complex Ginzburg-Landau (CQ-CGL) equation \[ iu_z+\frac{D}{2}u_{tt}+\gamma |u|^2u+\nu |u|^4u=i[\delta u+ \beta u_{tt}+\epsilon |u|^2u+\mu |u|^4u] \] as the parameters in the equation vary, to compute the spectrum of the linearization of the CQCGL equation about these solutions, and to compute the slowly decaying eigenfunctions that correspond to discrete eigenvalues near the continuous spectrum.

MSC:

35Q56 Ginzburg-Landau equations
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65F20 Numerical solutions to overdetermined systems, pseudoinverses
65F10 Iterative numerical methods for linear systems
35Q55 NLS equations (nonlinear Schrödinger equations)
35B32 Bifurcations in context of PDEs
Full Text: DOI

References:

[1] J. N.Kutz, Mode‐locked soliton lasers, SIAM Rev. 48:629-678 (2006). · Zbl 1121.35130
[2] T.Kapitula and B.Sandstede, Stability of bright solitary‐wave solutions to perturbed nonlinear Schrödinger equations, Physica D124:58-103 (1998). · Zbl 0935.35150
[3] T.Kapitula, Stability criterion for bright solitary waves of the perturbed cubic‐quintic Schrödinger equation, Physica D116:95-120 (1998). · Zbl 0935.35149
[4] Y.Shen, P. G.Kevrekidis, N.Whitaker, N. I.Karachalios, and D. J.Frantzeskakis, Finite‐temperature dynamics of matter‐wave dark solitons in linear and periodic potentials: An example of an anti‐damped Josephson junction, Phys. Rev. A86:033616-033628 (2012).
[5] J. M.Soto‐Crespo, N. N.Akhmediev, V. V.Afanasjev, and S.Wabnitz, Pulse solutions of the cubic‐quintic complex Ginzburg-Landau equation in the case of normal dispersion, Phys. Rev. E55:4783-4796 (1997).
[6] N.Akhmediev, J. M.Soto‐Crespo, and P.Grelu, Roadmap to ultra‐short record high‐energy pulses out of laser oscillators, Phys. Lett. A372:3124-3128 (2008). · Zbl 1220.35167
[7] J. M.Soto‐Crespo, N. N.Akhmediev, and V. V.Afanasjev, Stability of the pulselike solutions of the quintic complex Ginzburg Landau equation, J. Opt. Soc. Am. B13:1439-1449 (1996).
[8] S.Wang, A.Docherty, B. S.Marks, and C. R.Menyuk, Boundary tracking algorithms for determining the stability of mode‐locked pulses, J. Opt. Soc. Am. B31:2914-2930 (2014).
[9] N.Akhmediev and J. M.Soto‐Crespo, Exploding solitons and Shil’nikov’s theorem, Phys. Lett. A317:287-292 (2003). · Zbl 1056.35138
[10] R. L.Pego and M. I.Weinstein, Eigenvalues, and instabilities of solitary waves, Philos. Trans. R. Soc. Lond. A340:47-94 (1992). · Zbl 0776.35065
[11] T.Kapitula and B.Sandstede, Instability mechanism for bright solitary‐wave solutions to the cubic-quintic Ginzburg-Landau equation, J. Opt. Soc. Am. B15:2757-2762 (1998).
[12] T.Kapitula, N.Kutz, and B.Sandstede, The Evans function for nonlocal equations, Indiana Univ. Math. J. 53:1095-1126 (2004). · Zbl 1059.35137
[13] R. L.Pego, P.Smereka, and M. I.Weinstein, Oscillatory instability of travelling waves for a KdV-Burgers equation, Physica D67:45-65 (1993). · Zbl 0787.76031
[14] A. L.Afendikov and T. J.Bridges, Instability of the Hocking-Stewartson pulse and its implications for three‐dimensional Poiseulle flow, Proc. R. Soc. Lond. A457:257-272 (2001). · Zbl 0984.76022
[15] T. J.Bridges, G.Derks, and G.Gottwald, Stability and instability of solitary waves of the fifth‐order KdV equation: A numerical framework, Physica D172:190-216 (2002). · Zbl 1047.37053
[16] J.Humpherys and J.Lytle, Root following in Evans function computation, SIAM J. Numer. Anal. 53:2329-2346 (2015). · Zbl 1326.65157
[17] W. H.Press, B. P.Flannery, S. A.Teukolsky, and W. T.Vetterling, Numerical Recipes in C: The Art of Scientific Computing (2nd ed.), Cambridge University Press, New York, NY USA, 1992. · Zbl 0845.65001
[18] D.Kaup, Perturbation theory for solitons in optical fibers, Phys. Rev. A42:5689-5694 (1990).
[19] W. H.Renninger, A.Chong, and F. W.Wise, Amplifier similaritons in a dispersion‐mapped fiber laser [invited], Opt. Express19:22496-22501 (2011).
[20] L.Nugent‐Glandorf, T. A.Johnson, Y.Kobayashi, and S. A.Diddmans, Impact of dispersion on amplitude and frequency noise in a Yb‐fiber laser comb, Opt. Lett. 36:1578-1580 (2011).
[21] J. P.Gordon and H. A.Haus, Random walk of coherently amplified solitons in optical fiber transmission, Opt. Lett. 11:665-667 (1986).
[22] Y.Song, C.Kim, K.Jung, H.Kim, and J.Kim, Timing jitter optimization of mode‐locked Yb‐fiber lasers toward the attosecond regime, Opt. Express19:14518-14525 (2011).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.