×

Boundedness and stabilization in a haptotaxis model of oncolytic virotherapy with nonlinear sensitivity. (English) Zbl 1543.35042

Summary: This paper deals with a haptotaxis system modeling oncolytic virotherapy with nonlinear sensitivity \[ \begin{cases} u_t = \Delta u - \nabla\cdot(u\chi(v)\nabla v) + \mu u(1-u) - uz, \quad & (x, t)\in \Omega\times (0, \infty), \\ v_t = -(u+w)v, & (x, t)\in \Omega\times (0, \infty), \\ w_t = \Delta w - w + uz, & (x, t)\in \Omega\times (0, \infty), \\ z_t = \Delta z - z - uz +\beta w, & (x, t)\in \Omega\times (0, \infty), \end{cases} \] under homogeneous Neumann boundary conditions in a smoothly bounded domain \(\Omega\subset\mathbb{R}^3 \), where \(\mu, \beta >0\) and \(\chi(v)\) is a nonlinear sensitivity. Firstly, we obtain the local well-posedness and global boundedness of solutions for the above system. Moreover, when \(\beta\in(0, 1) \), we can prove that the global solution \((u, v, w, z)\) exponentially stabilizes to the constant equilibrium \((1, 0, 0, 0)\) in the topology \(L^p(\Omega)\times(L^{\infty}(\Omega))^3\) with \(p>1\) as \(t \rightarrow \infty \).

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] M. Agueh, Gagliardo-Nirenberg inequalities involving the gradient \(L^2\)-norm, C. R. Math., 346, 757-762, 2008 · Zbl 1149.35329 · doi:10.1016/j.crma.2008.05.015
[2] N. D. Alikakos, \(L^p\) bounds of solutions of reaction-diffusion equations, Comm. P. Differ. Equ., 4, 827-868, 1979 · Zbl 0421.35009 · doi:10.1080/03605307908820113
[3] T. R. D. Alzahrani Eftimie Trucu, Multiscale modelling of cancer response to oncolytic viral therapy, Math. Biosci., 310, 76-95, 2019 · Zbl 1425.92103 · doi:10.1016/j.mbs.2018.12.018
[4] T. Alzahrani, R. Eftimie and D. Trucu, Multiscale moving boundary modelling of cancer interactions with a fusogenic oncolytic virus: The impact of syncytia dynamics, Math. Biosci., 323 (2020), 108296, 22 pp. · Zbl 1437.92056
[5] A. R. A. M. A. J. E. L. R. J. C. A. M. Anderson Chaplain Newman Steele Thompson, Mathematical modelling of tumour invasion and metastasis, J. Theor. Med., 2, 129-154, 2000 · Zbl 0947.92012 · doi:10.1080/10273660008833042
[6] M. A. J. G. Chaplain Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15, 1685-1734, 2005 · Zbl 1094.92039 · doi:10.1142/S0218202505000947
[7] M. A. J. J. I. Chaplain Tello, On the stability of homogeneous steady states of a chemotaxis system with logistic growth term, Appl. Math. Lett., 57, 1-6, 2016 · Zbl 1342.35037 · doi:10.1016/j.aml.2015.12.001
[8] Z. Chen, Dampening effect of logistic source in a two-dimensional haptotaxis system with nonlinear zero-order interaction, J. Math. Anal. Appl., 492 (2020), 124435, 17 pp. · Zbl 1462.35412
[9] L. B. H. Corrias Perthame Zaag, Global solutions in some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72, 1-28, 2004 · Zbl 1115.35136 · doi:10.1007/s00032-003-0026-x
[10] K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424, 675-684, 2015 · Zbl 1310.35144 · doi:10.1016/j.jmaa.2014.11.045
[11] F. R. R. Guarguaglini Natalini, Global existence and uniqueness of solutions for multidimensional weakly parabolic systems arising in chemistry and biology, Commun. Pure Appl. Anal., 6, 287-309, 2007 · Zbl 1141.35387 · doi:10.3934/cpaa.2007.6.287
[12] C. Jin, Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms, Bull. Lond. Math. Soc., 50, 598-618, 2018 · Zbl 1396.92007 · doi:10.1112/blms.12160
[13] E. F. L. A. Keller Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415, 1970 · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[14] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’eva, Linear and Quasi-Linear Equations of Parabolic Type, \(1^{nd}\) edition, American Mathematical Society, Providence, 1968. · Zbl 0174.15403
[15] J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, Nonlinear Differ. Equ. Appl., 24 (2017), Paper No. 49, 33 pp. · Zbl 1373.35166
[16] S. M. C. E. Lawler Speranza Cho Chiocca, Oncolytic viruses in cancer treatment: A review, JAMA Oncol., 3, 841-849, 2017 · doi:10.1001/jamaoncol.2016.2064
[17] J. Y. Li Wang, Boundedness in a haptotactic cross-diffusion system modeling oncolytic virotherapy, J. Differ. Equ., 270, 94-113, 2021 · Zbl 1452.35077 · doi:10.1016/j.jde.2020.07.032
[18] Y. J. Li Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29, 1564-1595, 2016 · Zbl 1338.35438 · doi:10.1088/0951-7715/29/5/1564
[19] G. C. Litcanu Morales-Rodrigo, Asymptotic behavior of global solutions to a model of cell invasion, Math. Mod. Meth. Appl. S., 20, 1721-1758, 2010 · Zbl 1213.35250 · doi:10.1142/S0218202510004775
[20] G. C. Litcanu Morales-Rodrigo, Global solutions and asymptotic behavior for a parabolic degenerate coupled system arising from biology, Nonlinear Anal., 72, 77-98, 2010 · Zbl 1230.35048 · doi:10.1016/j.na.2009.06.083
[21] C. Morales-Rodrigo, Local existence and uniqueness of regular solutions in a model of tissue invasion by solid tumours, Math. Comput. Model., 47, 604-613, 2008 · Zbl 1157.35399 · doi:10.1016/j.mcm.2007.02.031
[22] P. Y. Pang Wang, Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differ. Equ., 263, 1269-1292, 2017 · Zbl 1364.35121 · doi:10.1016/j.jde.2017.03.016
[23] G. B. Ren Liu, Global classical solvability in a three-dimensional haptotaxis system modeling oncolytic virotherapy, Math. Method. Appl. Sci., 44, 9275-9291, 2021 · Zbl 1475.35363 · doi:10.1002/mma.7354
[24] G. Ren and J. Wei, Analysis of a two-dimensional triply haptotactic model with a fusogenic oncolytic virus and syncytia, Z. Angew. Math. Phys., 72 (2021), Paper No. 134, 23 pp. · Zbl 1466.35241
[25] C. C. M. Stinner Surulescu Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46, 1969-2007, 2014 · Zbl 1301.35189 · doi:10.1137/13094058X
[26] C. M. Stinner Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real World Appl., 12, 3727-3740, 2011 · Zbl 1268.35072 · doi:10.1016/j.nonrwa.2011.07.006
[27] X. Tao, Global classical solutions to an oncolytic viral therapy model with triply haptotactic terms, Acta Appl. Math., 171 (2021), Paper No. 5, 11 pp. · Zbl 1464.35379
[28] X. Tao, Global weak solutions to an oncolytic viral therapy model with doubly haptotactic terms, Nonlinear Anal. Real World Appl., 60 (2021), Paper No. 103276, 22 pp. · Zbl 1466.92083
[29] X. S. Tao Zhou, Dampening effects on global boundedness and asymptotic behavior in an oncolytic virotherapy model, J. Differ. Equ., 308, 57-76, 2022 · Zbl 1479.35119 · doi:10.1016/j.jde.2021.11.003
[30] Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling, Nonlinear Anal. Real World Appl., 12, 418-435, 2011 · Zbl 1205.35144 · doi:10.1016/j.nonrwa.2010.06.027
[31] Y. Tao and M. Winkler, A critical virus production rate for blow-up suppression in a haptotaxis model for oncolytic virotherapy, Nonlinear Anal., 198 (2020), 111870, 17 pp. · Zbl 1442.35480
[32] Y. M. Tao Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differ. Equ., 257, 784-815, 2014 · Zbl 1295.35144 · doi:10.1016/j.jde.2014.04.014
[33] Y. M. Tao Winkler, Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction, Discrete Contin. Dyn. Syst., 41, 439-454, 2021 · Zbl 1458.35076 · doi:10.3934/dcds.2020216
[34] Y. M. Tao Winkler, A critical virus production rate for efficiency of oncolytic virotherapy, Eur. J. Appl. Math., 32, 301-316, 2021 · Zbl 1526.92012 · doi:10.1017/S0956792520000133
[35] Y. M. Tao Winkler, Global classical solutions to a doubly haptotactic cross-diffusion system modeling oncolytic virotherapy, J. Differ. Equ., 268, 4973-4997, 2020 · Zbl 1430.35132 · doi:10.1016/j.jde.2019.10.046
[36] Y. M. Tao Winkler, Asymptotic stability of spatial homogeneity in a haptotaxis model for oncolytic virotherapy, P. Roy. Soc. Edinb. A., 152, 81-101, 2020 · Zbl 1484.35363 · doi:10.1017/prm.2020.97
[37] Y. C. Wang Xu, Asymptotic behaviour of a doubly haptotactic cross-diffusion model for oncolytic virotherapy, P. Roy. Soc. Edinb. A., 153, 881-906, 2023 · Zbl 1518.35121 · doi:10.1017/prm.2022.24
[38] Y. C. Wang Xu, Asymptotic behavior of a three-dimensional haptotactic cross-diffusion system modeling oncolytic virotherapy, Math. Models Methods Appl. Sci., 33, 2313-2335, 2023 · Zbl 1530.35126 · doi:10.1142/S0218202523400043
[39] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-2905, 2010 · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[40] M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283, 1664-1673, 2010 · Zbl 1205.35037 · doi:10.1002/mana.200810838
[41] M. Winkler, Global existence and slow grow-up in a quasilinear Keller-Segel system with exponentially decaying diffusivity, Nonlinearity, 30, 735-764, 2017 · Zbl 1382.35048 · doi:10.1088/1361-6544/aa565b
[42] M. Winkler, Singular structure formation in a degenerate haptotaxis model involving myopic diffusion, J. Math. Pure Appl., 112, 118-169, 2018 · Zbl 1391.35065 · doi:10.1016/j.matpur.2017.11.002
[43] M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34, 176-190, 2011 · Zbl 1291.92018 · doi:10.1002/mma.1346
[44] M. Winkler, The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: global largedata solutions and their relaxation properties, Math. Models Methods Appl. Sci., 26, 987-1024, 2016 · Zbl 1383.35099 · doi:10.1142/S0218202516500238
[45] M. Winkler, Renormalized radial large-data solutions to the higher-dimensional Keller-Segel system with singular sensitivity and signal absorption, J. Differ. Equ., 264, 2310-2350, 2018 · Zbl 1378.35165 · doi:10.1016/j.jde.2017.10.029
[46] M. T. Winkler Yokota, Stabilization in the logarithmic Keller-Segel system, Nonlinear Anal., 170, 123-141, 2018 · Zbl 1391.35066 · doi:10.1016/j.na.2018.01.002
[47] J. J. Zheng Xie, Global classical solutions to a higher-dimensional doubly haptotactic cross-diffusion system modeling oncolytic virotherapy, J. Differ. Equ., 340, 111-150, 2022 · Zbl 1500.35067 · doi:10.1016/j.jde.2022.08.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.