×

Global existence and slow grow-up in a quasilinear Keller-Segel system with exponentially decaying diffusivity. (English) Zbl 1382.35048

The author studies classical solutions to the fully parabolic chemotaxis system \[ \begin{cases} u_t = \nabla \cdot ( D(u) \nabla u ) - \nabla \cdot (S(u) \nabla v), \quad & (x,t) \in \Omega \times (0,\infty), \\ v_t = \Delta v -v+u, \quad & (x,t) \in \Omega \times (0,\infty), \end{cases} \] endowed with homogeneous Neumann boundary conditions and nonnegative initial data \(u_0, v_0 \in W^{1,\infty} (\Omega)\), where \(\Omega \subset \mathbb{R}^n\), \(n \in \mathbb{N}\), is a bounded domain with smooth boundary. Moreover, \(D,S \in C^{1+\delta} ([0,\infty))\) with \(\delta >0\) are assumed to satisfy \[ S(s) \geq 0, \quad S(0) =0, \quad K_1 e^{-\beta^- s} \leq D(s) \leq K_2 e^{-\beta^+ s}, \quad \frac{S(s)}{D(s)} \leq K_3 e^{\gamma s} \] for all \(s \geq 0\) with some \(\beta^- >0\), \(\beta^+ \in (-\infty, \beta^-]\), \(\gamma \in [\frac{\beta^+ - \beta^-}{2}, \frac{\beta^+}{2})\), and positive constants \(K_1,K_2,K_3\).
The author shows the existence of a unique global classical solution \((u,v)\). Moreover, for any \(\varepsilon >0\) the existence of a constant \(C(\varepsilon) >0\) is established such that \[ \|u(\cdot,t) \|_{L^\infty (\Omega)} \leq \left( \frac{1}{\beta^+ - 2\gamma} + \varepsilon \right) \ln (1+t) + C(\varepsilon) \] for all \(t>0\) is satisfied. This extends known global existence results, where the diffusivity \(D\) is assumed to decay at most algebraically, to exponentially decaying \(D\).
In the particular case \(D(s) = e^{-\beta s}\) and \(S(s) = se^{-\alpha s}\) with \(0 < \frac{\beta}{2} < \alpha \leq \beta\) for \(n \geq 2\) (where the additional restriction \(\alpha <\beta\) is needed for \(n=2\)), the author proves the existence of radially symmetric global solutions \((u,v)\) which blow up in infinite time with blow-up rates which are not faster than logarithmic. This seems to be the first time that such slow rates of infinite time blow-up are observed for a Keller-Segel system.
The main idea in the proof of the global existence result is a Moser-type iteration for \(e^u\) which finally results in an estimate for \(\|e^{u(\cdot,t)} \|_{L^\infty (\Omega)}\) and the above logarithmic estimate for \(u\).

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35B44 Blow-up in context of PDEs
92C17 Cell movement (chemotaxis, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
Full Text: DOI

References:

[1] Bellomo N, Bellouquid A, Tao Y and Winkler M 2015 Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues Math. Models Methods Appl. Sci.25 1663-763 · Zbl 1326.35397 · doi:10.1142/S021820251550044X
[2] Calvez V and Carillo J A 2006 Volume effects in the Keller-Segel model: energy estimates preventing blow-up J. Math. Pures Appl.86 155-75 · Zbl 1116.35057 · doi:10.1016/j.matpur.2006.04.002
[3] Cao X 2015 Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces Discrete Contin. Dyn. Syst. A 35 1891-904 · Zbl 1515.35047 · doi:10.3934/dcds.2015.35.1891
[4] Cieślak T 2007 Quasilinear nonuniformly parabolic system modelling chemotaxis J. Math. Anal. Appl.326 1410-26 · Zbl 1112.35087 · doi:10.1016/j.jmaa.2006.03.080
[5] Cieślak T and Stinner C 2012 Finite-time blowup and global-in-time unbounded solutions to a parabolic – parabolic quasilinear Keller-Segel system in higher dimensions J. Differ. Equ.252 5832-51 · Zbl 1252.35087 · doi:10.1016/j.jde.2012.01.045
[6] Cieślak T and Stinner C 2014 Finite-time blowup in a supercritical quasilinear parabolic – parabolic Keller-Segel system in dimension 2 Acta Appl. Math.129 135-46 · Zbl 1295.35123 · doi:10.1007/s10440-013-9832-5
[7] Cieślak T and Stinner C 2015 New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models J. Differ. Equ.258 2080-113 · Zbl 1331.35041 · doi:10.1016/j.jde.2014.12.004
[8] Cieślak T and Winkler M 2008 Finite-time blow-up in a quasilinear system of chemotaxis Nonlinearity21 1057-76 · Zbl 1136.92006 · doi:10.1088/0951-7715/21/5/009
[9] Djie K and Winkler M 2010 Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect Nonlinear Anal. Theory Methods Appl.72 1044-64 · Zbl 1183.92012 · doi:10.1016/j.na.2009.07.045
[10] Herrero M A and Velázquez J J L 1997 A blow-up mechanism for a chemotaxis model Ann. Scuola Normale Super. Pisa Cl. Sci.24 633-83 · Zbl 0904.35037
[11] Hillen T and Painter K J 2009 A user’s guide to PDE models for chemotaxis J. Math. Biol.58 183-217 · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[12] Horstmann D and Winkler M 2005 Boundedness vs. blow-up in a chemotaxis system J. Differ. Equ.215 52-107 · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[13] Keller E F and Segel L A 1970 Initiation of slime mold aggregation viewed as an instability J. Theor. Biol.26 399-415 · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[14] Kowalczyk R 2005 Preventing blow-up in a chemotaxis model J. Math. Anal. Appl.305 566-85 · Zbl 1065.35063 · doi:10.1016/j.jmaa.2004.12.009
[15] Kowalczyk R and Szymańska Z 2008 On the global existence of solutions to an aggregation model J. Math. Anal. Appl.343 379-98 · Zbl 1143.35333 · doi:10.1016/j.jmaa.2008.01.005
[16] Mizoguchi N and Winkler M Blow-up in the two-dimensional parabolic Keller-Segel system (preprint)
[17] Nagai T, Senba T and Yoshida K 1997 Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis Funkc. Ekvacioj, Ser. Int.40 411-33 · Zbl 0901.35104
[18] Osaki K and Yagi A 2001 Finite dimensional attractor for one-dimensional Keller-Segel equations Funkc. Ekvacioj, Ser. Int.44 441-69 · Zbl 1145.37337
[19] Painter K J and Hillen T 2002 Volume-filling and quorum-sensing in models for chemosensitive movement Can. Appl. Math. Q.10 501-43 · Zbl 1057.92013
[20] Senba T and Suzuki T 2006 A quasi-linear system of chemotaxis Abstr. Appl. Anal.2006 1-21 · Zbl 1134.35059 · doi:10.1155/AAA/2006/23061
[21] Tao Y and Winkler M 2011 A chemotaxis-haptotaxis model: the roles of porous medium diffusion and logistic source SIAM J. Math. Anal.43 685-704 · Zbl 1259.35210 · doi:10.1137/100802943
[22] Tao Y and Winkler M 2012 Boundedness in a quasilinear parabolic – parabolic Keller-Segel system with subcritical sensitivity J. Differ. Equ.252 692-715 · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[23] Winkler M 2010 Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods Appl. Sci.33 12-24 · Zbl 1182.35220
[24] Winkler M 2013 Finite-time blow-up in the higher-dimensional parabolic – parabolic Keller-Segel system J. Math. Pures Appl.100 748-67 · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
[25] Wrzosek D 2004 Global attractor for a chemotaxis model with prevention of overcrowding Nonlinear Anal. Theory Methods Appl.59 1293-310 · Zbl 1065.35072 · doi:10.1016/S0362-546X(04)00327-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.