×

On refined conjectures of Birch and Swinnerton-Dyer type for Hasse-Weil-Artin \(L\)-series. (English) Zbl 07913517

Memoirs of the American Mathematical Society 1482. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-6966-5/pbk; 978-1-4704-7830-8/ebook). v, 156 p. (2024).
Summary: We consider refined conjectures of Birch and Swinnerton-Dyer type for the Hasse-Weil-Artin \(L\)-series of abelian varieties over general number fields. We shall, in particular, formulate several new such conjectures and establish their precise relation to previous conjectures, including to the relevant special case of the equivariant Tamagawa number conjecture. We also derive a wide range of concrete interpretations and explicit consequences of these conjectures that, in general, involve a thoroughgoing mixture of difficult Archimedean considerations related to refinements of the conjecture of Deligne and Gross and delicate \(p\)-adic congruence relations that involve the bi-extension height pairing of Mazur and Tate and are related to key aspects of noncommutative Iwasawa theory. In important special cases we provide strong evidence, both theoretical and numerical, in support of the conjectures.

MSC:

11-02 Research exposition (monographs, survey articles) pertaining to number theory
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11G05 Elliptic curves over global fields
11G10 Abelian varieties of dimension \(> 1\)
11G25 Varieties over finite and local fields
11R34 Galois cohomology

References:

[1] Atiyah, M. F., Algebraic Number Theory. Cohomology of groups, 94-115, 1965, Thompson, Washington, D.C.
[2] Benois, Denis, Th\'{e}orie d’Iwasawa des repr\'{e}sentations cristallines. II, Comment. Math. Helv., 603-677, 2008 · Zbl 1157.11041 · doi:10.4171/CMH/138
[3] Bertolini, Massimo, Kolyvagin’s descent and Mordell-Weil groups over ring class fields, J. Reine Angew. Math., 63-74, 1990 · Zbl 0712.14008 · doi:10.1515/crll.1990.412.63
[4] Bertolini, Massimo, Derived heights and generalized Mazur-Tate regulators, Duke Math. J., 75-111, 1994 · Zbl 0853.14013 · doi:10.1215/S0012-7094-94-07604-7
[5] Bertolini, Massimo, Derived \(p\)-adic heights, Amer. J. Math., 1517-1554, 1995 · Zbl 0882.11036 · doi:10.2307/2375029
[6] Bertolini, Massimo, Beilinson-Flach elements and Euler systems II: the Birch-Swinnerton-Dyer conjecture for Hasse-Weil-Artin \(L\)-series, J. Algebraic Geom., 569-604, 2015 · Zbl 1328.11073 · doi:10.1090/S1056-3911-2015-00675-0
[7] Birch, B. J., Proc. Sympos. Pure Math., Vol. VIII. Conjectures concerning elliptic curves, 106-112, 1965, Amer. Math. Soc., Providence, R.I. · Zbl 0238.14011
[8] Bisatt, Matthew, On the Birch-Swinnerton-Dyer conjecture and Schur indices, Bull. Lond. Math. Soc., 1027-1034, 2018 · Zbl 1443.11124 · doi:10.1112/blms.12199
[9] Bley, Werner, Numerical evidence for the equivariant Birch and Swinnerton-Dyer conjecture, Exp. Math., 426-456, 2011 · Zbl 1277.11072 · doi:10.1080/10586458.2011.565259
[10] Bley, Werner, Numerical evidence for the equivariant Birch and Swinnerton-Dyer conjecture (Part II), Math. Comp., 1681-1705, 2012 · Zbl 1277.11071 · doi:10.1090/S0025-5718-2012-02572-5
[11] Bley, Werner, The equivariant Tamagawa number conjecture and modular symbols, Math. Ann., 179-190, 2013 · Zbl 1288.11066 · doi:10.1007/s00208-012-0837-6
[12] Bley, W., Equivariant epsilon constants, discriminants and \'{e}tale cohomology, Proc. London Math. Soc. (3), 545-590, 2003 · Zbl 1056.11071 · doi:10.1112/S0024611503014217
[13] Bley, Werner, Equivariant epsilon constant conjectures for weakly ramified extensions, Math. Z., 1217-1244, 2016 · Zbl 1378.11097 · doi:10.1007/s00209-016-1640-y
[14] Bley, Werner, The equivariant local \(\varepsilon \)-constant conjecture for unramified twists of \(\mathbb{Z}_p(1)\), Acta Arith., 313-383, 2017 · Zbl 1391.11149 · doi:10.4064/aa8567-10-2016
[15] Bley, Werner, Algorithmic proof of the epsilon constant conjecture, Math. Comp., 2363-2387, 2013 · Zbl 1359.11094 · doi:10.1090/S0025-5718-2013-02691-9
[16] Bley, Werner, Congruences for critical values of higher derivatives of twisted Hasse-Weil \(L\)-functions, J. Reine Angew. Math., 105-135, 2017 · Zbl 1453.11142 · doi:10.1515/crelle-2014-0081
[17] Bley, Werner, Congruences for critical values of higher derivatives of twisted Hasse-Weil L-functions, III, Math. Proc. Cambridge Philos. Soc., 431-456, 2022 · Zbl 1509.11057 · doi:10.1017/S0305004121000657
[18] Bloch, Spencer, The Grothendieck Festschrift, Vol. I. \(L\)-functions and Tamagawa numbers of motives, Progr. Math., 333-400, 1990, Birkh\"{a}user Boston, Boston, MA · Zbl 0768.14001
[19] Bradshaw, Robert, Heegner points and the arithmetic of elliptic curves over ring class extensions, J. Number Theory, 1707-1719, 2012 · Zbl 1276.11088 · doi:10.1016/j.jnt.2011.12.018
[20] Breuning, Manuel, On equivariant global epsilon constants for certain dihedral extensions, Math. Comp., 881-898, 2004 · Zbl 1041.11073 · doi:10.1090/S0025-5718-03-01605-3
[21] Breuning, Manuel, Equivariant local epsilon constants and \'{e}tale cohomology, J. London Math. Soc. (2), 289-306, 2004 · Zbl 1068.11075 · doi:10.1112/S002461070400554X
[22] Breuning, Manuel, Additivity of Euler characteristics in relative algebraic \(K\)-groups, Homology Homotopy Appl., 11-36, 2005 · Zbl 1085.18011
[23] Burns, David, Number theory. Equivariant Whitehead torsion and refined Euler characteristics, CRM Proc. Lecture Notes, 35-59, 2004, Amer. Math. Soc., Providence, RI · Zbl 1070.19003 · doi:10.1090/crmp/036/04
[24] Burns, David, On leading terms and values of equivariant motivic \(L\)-functions, Pure Appl. Math. Q., 83-172, 2010 · Zbl 1227.11118 · doi:10.4310/PAMQ.2010.v6.n1.a4
[25] Burns, David, On the Galois structure of arithmetic cohomology I: Compactly supported \(p\)-adic cohomology, Nagoya Math. J., 294-321, 2020 · Zbl 1459.11217 · doi:10.1017/nmj.2018.41
[26] Burns, D., Motivic \(L\)-functions and Galois module structures, Math. Ann., 65-102, 1996 · Zbl 0867.11081 · doi:10.1007/BF01444212
[27] Burns, D., Tamagawa numbers for motives with (noncommutative) coefficients, Doc. Math., 501-570, 2001 · Zbl 1052.11077
[28] Bloch, S., A note on height pairings, Tamagawa numbers, and the Birch and Swinnerton-Dyer conjecture, Invent. Math., 65-76, 1980 · Zbl 0444.14015 · doi:10.1007/BF01402274
[29] Burns, David, On zeta elements for \(\mathbb{G}_m\), Doc. Math., 555-626, 2016 · Zbl 1407.11133
[30] Burns, David, On the Galois structure of Selmer groups, Int. Math. Res. Not. IMRN, 11909-11933, 2015 · Zbl 1334.11043 · doi:10.1093/imrn/rnv045
[31] Burns, David, On Mordell-Weil groups and congruences between derivatives of twisted Hasse-Weil \(L\)-functions, J. Reine Angew. Math., 187-228, 2018 · Zbl 1381.11051 · doi:10.1515/crelle-2014-0153
[32] Burns, David, On higher special elements of \(p\)-adic representations, Int. Math. Res. Not. IMRN, 15337-15411, 2021 · Zbl 1497.11268 · doi:10.1093/imrn/rnz378
[33] Burns, David, On descent theory and main conjectures in non-commutative Iwasawa theory, J. Inst. Math. Jussieu, 59-118, 2011 · Zbl 1213.11134 · doi:10.1017/S147474800900022X
[34] Chinburg, Ted, Exact sequences and Galois module structure, Ann. of Math. (2), 351-376, 1985 · Zbl 0567.12010 · doi:10.2307/1971177
[35] Coates, John, The \(\text{GL}_2\) main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst. Hautes \'{E}tudes Sci., 163-208, 2005 · Zbl 1108.11081 · doi:10.1007/s10240-004-0029-3
[36] Curtis, Charles W., Methods of representation theory. Vol. I, Pure and Applied Mathematics, xxi+819 pp., 1981, John Wiley & Sons, Inc., New York · Zbl 0469.20001
[37] Darmon, Henri, A refined conjecture of Mazur-Tate type for Heegner points, Invent. Math., 123-146, 1992 · Zbl 0781.11023 · doi:10.1007/BF01231327
[38] Darmon, Henri, \(p\)-adic monodromy and the Birch and Swinnerton-Dyer conjecture. Euler systems and refined conjectures of Birch Swinnerton-Dyer type, Contemp. Math., 265-276, 1991, Amer. Math. Soc., Providence, RI · Zbl 0823.11036 · doi:10.1090/conm/165/01604
[39] Darmon, Henri, Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin \(L\)-functions, J. Amer. Math. Soc., 601-672, 2017 · Zbl 1397.11090 · doi:10.1090/jams/861
[40] Deligne, P., Current trends in arithmetical algebraic geometry. Le d\'{e}terminant de la cohomologie, Contemp. Math., 93-177, 1985, Amer. Math. Soc., Providence, RI · doi:10.1090/conm/067/902592
[41] Deligne, P., Sur la variation, par torsion, des constantes locales d’\'{e}quations fonctionnelles de fonctions \(L\), Invent. Math., 89-118, 1981 · Zbl 0442.12012 · doi:10.1007/BF01393935
[42] Deninger, Christopher, Motives. Motivic \(L\)-functions and regularized determinants, Proc. Sympos. Pure Math., 707-743, 1991, Amer. Math. Soc., Providence, RI · Zbl 0816.14010 · doi:10.1090/pspum/055.1/1265547
[43] Dokchitser, T., Computations in noncommutative Iwasawa theory, Proc. Lond. Math. Soc. (3), 211-272, 2007 · Zbl 1206.11083 · doi:10.1112/plms/pdl014
[44] Dokchitser, Vladimir, On a BSD-type formula for \(L\)-values of Artin twists of elliptic curves, J. Reine Angew. Math., 199-230, 2021 · Zbl 1485.11107 · doi:10.1515/crelle-2020-0036
[45] Ellerbrock, Nils, On formal groups and Tate cohomology in local fields, Acta Arith., 285-299, 2018 · Zbl 1402.14061 · doi:10.4064/aa170509-5-12
[46] Fearnley, Jack, Critical values of derivatives of twisted elliptic \(L\)-functions, Experiment. Math., 149-160, 2010 · Zbl 1221.11148
[47] Fearnley, Jack, Critical values of higher derivatives of twisted elliptic \(L\)-functions, Exp. Math., 213-222, 2012 · Zbl 1302.11040 · doi:10.1080/10586458.2012.676522
[48] Fearnley, Jack, Vanishing and nonvanishing Dirichlet twists of \(L\)-functions of elliptic curves, J. Lond. Math. Soc. (2), 539-557, 2012 · Zbl 1267.11070 · doi:10.1112/jlms/jds018
[49] Fontaine, Jean-Marc, Current trends in arithmetical algebraic geometry. \(p\)-adic periods and \(p\)-adic \'{e}tale cohomology, Contemp. Math., 179-207, 1985, Amer. Math. Soc., Providence, RI · Zbl 0632.14016 · doi:10.1090/conm/067/902593
[50] Fontaine, Jean-Marc, Motives. Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions \(L\), Proc. Sympos. Pure Math., 599-706, 1991, Amer. Math. Soc., Providence, RI · Zbl 0821.14013 · doi:10.1090/pspum/055.1/1265546
[51] Fr\"{o}hlich, Albrecht, Galois module structure of algebraic integers, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], x+262 pp., 1983, Springer-Verlag, Berlin · Zbl 0501.12012 · doi:10.1007/978-3-642-68816-4
[52] Fukaya, Takako, Proceedings of the St. Petersburg Mathematical Society. Vol. XII. A formulation of conjectures on \(p\)-adic zeta functions in noncommutative Iwasawa theory, Amer. Math. Soc. Transl. Ser. 2, 1-85, 2006, Amer. Math. Soc., Providence, RI · Zbl 1238.11105 · doi:10.1090/trans2/219/01
[53] Gross, Benedict H., Number theory related to Fermat’s last theorem (Cambridge, Mass., 1981). On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication, Progr. Math., 219-236, 1982, Birkh\"{a}user, Boston, Mass. · Zbl 0506.14040
[54] Gross, Benedict H., Modular forms. Heegner points on \(X_0(N)\), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., 87-105, 1983, Horwood, Chichester · Zbl 0559.14011
[55] Gross, Benedict H., \(L\)-functions and arithmetic. Kolyvagin’s work on modular elliptic curves, London Math. Soc. Lecture Note Ser., 235-256, 1989, Cambridge Univ. Press, Cambridge · Zbl 0743.14021 · doi:10.1017/CBO9780511526053.009
[56] Buhler, Joe P., Arithmetic on elliptic curves with complex multiplication. II, Invent. Math., 11-29, 1985 · Zbl 0584.14027 · doi:10.1007/BF01388654
[57] Gross, Benedict H., Heegner points and derivatives of \(L\)-series, Invent. Math., 225-320, 1986 · Zbl 0608.14019 · doi:10.1007/BF01388809
[58] Hayashi, Yoshiki, The Rankin’s \(L\)-function and Heegner points for general discriminants, Proc. Japan Acad. Ser. A Math. Sci., 30-32, 1995 · Zbl 0853.11041
[59] Holland, D., Fr\"{o}hlich’s and Chinburg’s conjectures in the factorisability defect class group, J. Reine Angew. Math., 1-17, 1993 · Zbl 0782.11030 · doi:10.1515/crll.1993.442.1
[60] Izychev, Dmitriy, Equivariant epsilon conjecture for 1-dimensional Lubin-Tate groups, J. Th\'{e}or. Nombres Bordeaux, 485-521, 2016 · Zbl 1411.11105
[61] Jetchev, Dimitar, Explicit Heegner points: Kolyvagin’s conjecture and nontrivial elements in the Shafarevich-Tate group, J. Number Theory, 284-302, 2009 · Zbl 1228.11082 · doi:10.1016/j.jnt.2008.05.007
[62] Kakde, Mahesh, The main conjecture of Iwasawa theory for totally real fields, Invent. Math., 539-626, 2013 · Zbl 1300.11112 · doi:10.1007/s00222-012-0436-x
[63] Kato, Kazuya, \(p\)-adic Hodge theory and values of zeta functions of modular forms, Ast\'{e}risque, ix, 117-290, 2004 · Zbl 1142.11336
[64] Kings, Guido, Arithmetic of \(L\)-functions. The equivariant Tamagawa number conjecture and the Birch-Swinnerton-Dyer conjecture, IAS/Park City Math. Ser., 315-349, 2011, Amer. Math. Soc., Providence, RI · Zbl 1277.11073 · doi:10.1090/pcms/018/12
[65] Kings, Guido, Rankin-Eisenstein classes and explicit reciprocity laws, Camb. J. Math., 1-122, 2017 · Zbl 1428.11103 · doi:10.4310/CJM.2017.v5.n1.a1
[66] Kurihara, Masato, Iwasawa theory and Fitting ideals, J. Reine Angew. Math., 39-86, 2003 · Zbl 1056.11063 · doi:10.1515/crll.2003.068
[67] Lawson, Tyler, Elliptic curves, modular forms and Iwasawa theory. Vanishing of some Galois cohomology groups for elliptic curves, Springer Proc. Math. Stat., 373-399, 2016, Springer, Cham · Zbl 1410.11052 · doi:10.1007/978-3-319-45032-2\_11
[68] Lubin, Jonathan, The norm map for ordinary abelian varieties, J. Algebra, 236-240, 1978 · Zbl 0417.14035 · doi:10.1016/0021-8693(78)90271-5
[69] Macias Castillo, Daniel, Congruences for critical values of higher derivatives of twisted Hasse-Weil \(L\)-functions, II, Acta Arith., 327-365, 2020 · Zbl 1468.11152 · doi:10.4064/aa181101-4-12
[70] Macias Castillo, Daniel, On non-abelian higher special elements of \(p\)-adic representations, Israel J. Math., 95-147, 2022 · Zbl 1509.11108 · doi:10.1007/s11856-022-2296-4
[71] Martinet, J., Algebraic number fields: \(L\)-functions and Galois properties. Character theory and Artin \(L\)-functions, 1-87, 1975, Academic Press, London · Zbl 0359.12015
[72] Mazur, Barry, Rational points of abelian varieties with values in towers of number fields, Invent. Math., 183-266, 1972 · Zbl 0245.14015 · doi:10.1007/BF01389815
[73] Mazur, B., On the arithmetic of special values of \(L\) functions, Invent. Math., 207-240, 1979 · Zbl 0426.14009 · doi:10.1007/BF01406841
[74] Mazur, Barry, Kolyvagin systems, Mem. Amer. Math. Soc., viii+96 pp., 2004 · Zbl 1055.11041 · doi:10.1090/memo/0799
[75] Mazur, Barry, Organizing the arithmetic of elliptic curves, Adv. Math., 504-546, 2005 · Zbl 1122.11038 · doi:10.1016/j.aim.2005.05.024
[76] Mazur, Barry, Finding large Selmer rank via an arithmetic theory of local constants, Ann. of Math. (2), 579-612, 2007 · Zbl 1219.11084 · doi:10.4007/annals.2007.166.579
[77] Mazur, B., Arithmetic and geometry, Vol. I. Canonical height pairings via biextensions, Progr. Math., 195-237, 1983, Birkh\"{a}user Boston, Boston, MA · Zbl 0574.14036
[78] Mazur, B., Refined conjectures of the “Birch and Swinnerton-Dyer type”, Duke Math. J., 711-750, 1987 · Zbl 0636.14004 · doi:10.1215/S0012-7094-87-05431-7
[79] Mazur, B., On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., 1-48, 1986 · Zbl 0699.14028 · doi:10.1007/BF01388731
[80] Milne, J. S., Arithmetic duality theorems, Perspectives in Mathematics, x+421 pp., 1986, Academic Press, Inc., Boston, MA · Zbl 0613.14019
[81] Navilarekallu, Tejaswi, Equivariant Birch-Swinnerton-Dyer conjecture for the base change of elliptic curves: an example, Int. Math. Res. Not. IMRN, Art. ID rnm164, 33 pp., 2008 · Zbl 1206.11084 · doi:10.1093/imrn/rnm164
[82] Nekov\'{a}\v{r}, Jan, Selmer complexes, Ast\'{e}risque, viii+559 pp., 2006 · Zbl 1211.11120
[83] Neukirch, J\"{u}rgen, Cohomology of number fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], xvi+699 pp., 2000, Springer-Verlag, Berlin · Zbl 0948.11001
[84] Ritter, J\"{u}rgen, On the “main conjecture” of equivariant Iwasawa theory, J. Amer. Math. Soc., 1015-1050, 2011 · Zbl 1228.11165 · doi:10.1090/S0894-0347-2011-00704-2
[85] Rohrlich, David E., Automorphic forms and analytic number theory. The vanishing of certain Rankin-Selberg convolutions, 123-133, 1989, Univ. Montr\'{e}al, Montreal, QC · Zbl 0737.11014
[86] Rubin, Karl, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math., 25-68, 1991 · Zbl 0737.11030 · doi:10.1007/BF01239508
[87] Rubin, Karl, A Stark conjecture “over \(\mathbf Z\)” for abelian \(L\)-functions with multiple zeros, Ann. Inst. Fourier (Grenoble), 33-62, 1996 · Zbl 0834.11044
[88] Rubin, Karl, Galois representations in arithmetic algebraic geometry. Euler systems and modular elliptic curves, London Math. Soc. Lecture Note Ser., 351-367, 1996, Cambridge Univ. Press, Cambridge · Zbl 0952.11016 · doi:10.1017/CBO9780511662010.009
[89] Sano, T., Refined abelian Stark conjectures and the equivariant leading term conjecture of Burns, Compos. Math., 1809-1835, 2014 · Zbl 1311.11108 · doi:10.1112/S0010437X14007416
[90] Schneider, Peter, \(p\)-adic height pairings. I, Invent. Math., 401-409, 1982 · Zbl 0509.14048 · doi:10.1007/BF01389362
[91] Serre, Jean-Pierre, Propri\'{e}t\'{e}s galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., 259-331, 1972 · Zbl 0235.14012 · doi:10.1007/BF01405086
[92] Silverman, Joseph H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, xii+400 pp., 1992, Springer-Verlag, New York · Zbl 0752.14034
[93] Swan, R. G., Algebraic \(K\)-theory, Lecture Notes in Mathematics, No. 76, iv+262 pp., 1968, Springer-Verlag, Berlin-New York · Zbl 0193.34601
[94] Tan, Ki-Seng, \(p\)-adic monodromy and the Birch and Swinnerton-Dyer conjecture. \(p\)-adic pairings, Contemp. Math., 111-121, 1991, Amer. Math. Soc., Providence, RI · Zbl 0840.14030 · doi:10.1090/conm/165/01616
[95] Tate, John, S\'{e}minaire Bourbaki, Vol. 9. On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Exp. No. 306, 415-440, 1995, Soc. Math. France, Paris · Zbl 0199.55604
[96] Taylor, Martin, Classgroups of group rings, London Mathematical Society Lecture Note Series, xiii+119 pp., 1984, Cambridge University Press, Cambridge · Zbl 0597.13002 · doi:10.1017/CBO9781107325555
[97] Ullom, S., Galois cohomology of ambiguous ideals, J. Number Theory, 11-15, 1969 · Zbl 0176.33501 · doi:10.1016/0022-314X(69)90022-5
[98] Venjakob, Otmar, \(L\)-functions and Galois representations. From the Birch and Swinnerton-Dyer conjecture to noncommutative Iwasawa theory via the equivariant Tamagawa number conjecture-a survey, London Math. Soc. Lecture Note Ser., 333-380, 2007, Cambridge Univ. Press, Cambridge · Zbl 1145.11076 · doi:10.1017/CBO9780511721267.010
[99] Weibel, Charles A., An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, xiv+450 pp., 1994, Cambridge University Press, Cambridge · Zbl 0797.18001 · doi:10.1017/CBO9781139644136
[100] Wiersema, Hanneke, Integrality of twisted \(L\)-values of elliptic curves, Doc. Math., 2041-2066, 2022 · Zbl 1523.11116
[101] Jakovlev, A. V., Homological determination of \(p\)-adic representations of rings with basis of powers, Izv. Akad. Nauk SSSR Ser. Mat., 1000-1014, 1970 · Zbl 0209.05902
[102] Yakovlev, A. V., Homological definability of \(p\)-adic representations of groups with cyclic Sylow \(p\)-subgroup, An. \c{S}tiin\c{t}. Univ. Ovidius Constan\c{t}a Ser. Mat., 206-221, 1996 · Zbl 0895.20003
[103] Zhang, Shouwu, Heights of Heegner points on Shimura curves, Ann. of Math. (2), 27-147, 2001 · Zbl 1036.11029 · doi:10.2307/2661372
[104] Zhang, Shou-Wu, Heegner points and Rankin \(L\)-series. Gross-Zagier formula for \(\text{GL}(2)\). II, Math. Sci. Res. Inst. Publ., 191-214, 2004, Cambridge Univ. Press, Cambridge · doi:10.1017/CBO9780511756375.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.