×

On the Galois structure of arithmetic cohomology. I: Compactly supported \(p\)-adic cohomology. (English) Zbl 1459.11217

Let \(k\) be a number field, \(k^c\) an algebraic closure of \(k\) and \(\Sigma\) a finite set of places of \(k\) containing all Archimedean places \({\Sigma}_{\infty}\) and places above a fixed prime \(p.\) For a finite extension \(L\) of \(k\) let \({\Sigma}_L\) be the set of places of \(L\) above \({\Sigma}.\) Let \({\mathcal O}_{L,{\Sigma}}\) be the subring of \(L\) consisting of elements that are integral outside \({\Sigma}_L\) and \({\mathrm{Cl}}_{\Sigma}(L)\) the ideal class group of \({\mathcal O}_{L,{\Sigma}}.\) Assume that \(k_{\Sigma}\) is the maximal extension of \(k\) in \(k^c\) unramified outside \(\Sigma ,\) \(G_{k,{\Sigma}}=\text{Gal}(k_{\Sigma}/k)\) and \({\rho}: G_{k,{\Sigma}}\rightarrow {\mathrm{Aut}}_{{\mathbb Z}_p}(T)\) is a continuous representation of \(G_{k,{\Sigma}}\) on a finitely generated free \({\mathbb Z}_p\)-module \(T.\) Let further \(H^i({\mathcal O}_{L,{\Sigma}}, T):=H^i({\mathrm{Spec}}({\mathcal O}_{L,{\Sigma}})_{\mathrm{{\acute{e}}t}}, T) \) be the \(p\)-adic étale cohomology groups and \(H^i_c({\mathcal O}_{L,{\Sigma}}, T):=H^i_c({\mathrm{Spec}}({\mathcal O}_{L,{\Sigma}})_{\mathrm{{\acute{e}}t}}, T) \) be the compactly supported étale cohomology groups. The main result of the paper is the following:
Theorem. Let \(F/E\) be a Galois extension of fields with \(k\subseteq E\subseteq F\subset k^c ,\) \(F/k\) finite and \(F/E\) unramified outside \({\Sigma}_E.\) Then in each degree \(i\) there are decompositions of \({\mathbb Z}_p[G_{F/E}]\)-modules \[ H^i({\mathcal O}_{F,{\Sigma}}, T)=P^i_{F/E,T}\oplus R^i_{F/E,T}\] and \[ H^i_c({\mathcal O}_{F,{\Sigma}}, T)=P^i_{F/E,T,c}\oplus R^i_{F/E,T,c}\] where the modules \(P^i_{F/E,T}\) and \(P^i_{F/E,T,c}\) are projective and one has \[ {\mathrm{{rk}_p}}(R^i_{F/E,T})\leq m^i_{F/E,T}\cdot {\mathrm{{rk}}}(T) \quad \mathrm{and} \quad {\mathrm{{rk}_p}}(R^i_{F/E,T,c})\leq m^i_{F/E,T,c}\cdot {\mathrm{{rk}}}(T) \] for integers \(m^i_{F/E,T}\) and \(m^i_{F/E,T,c}\) depending only on \(i\), \([F:E],\) \({\mathrm{{rk}_p}}({\mathrm{Cl}}_{\Sigma}(F_T)\) and \(\# {\Sigma}_{f,F}.\)
In the above theorem \(F_T:=k_TF,\) where the field \(k_T\) is a finite extension of \(k({\mu}_p)\) that corresponds to the action of \(G_{k({\mu}_p),{\Sigma}}\) on \(T/p\) and \({\Sigma}_{f,F}={\Sigma}_F\backslash{\Sigma}_{\infty}.\) The constants \(m^i_{F/E,T}\) and \(m^i_{F/E,T,c}\) can be given explicitly. As an application od this result the author obtains new bounds on the changes in ranks of Selmer groups over extensions of number fields. The author also discusses the consequences of his theorem to the Galois structure of some natural arithmetic modules, e.g., unit groups, higher algebraic \(K\)-groups and ray class groups.

MSC:

11R34 Galois cohomology
11R23 Iwasawa theory
20C11 \(p\)-adic representations of finite groups

References:

[1] Atiyah, M. F. and Wall, C. T. C., “Cohomology of groups”, in Algebraic Number Theory, (eds. Cassels, J. W. S. and Fröhlich, A.) Academic Press, London, 1967, 94-115. · Zbl 1494.20079
[2] Bloch, S. and Kato, K., “L-functions and Tamagawa numbers of motives”, in The Grothendieck Festschrift, Vol. I, , Birkhäuser, 1990, 333-400. · Zbl 0768.14001
[3] Burns, D., On the Galois structure of arithmetic cohomology III: Selmer groups of critical motives, Kyoto J. Math.58 (2018), 671-693. · Zbl 1452.11074
[4] Burns, D. and Flach, M., Motivic L-functions and Galois module structures, Math. Ann.305 (1996), 65-102. · Zbl 0867.11081
[5] Burns, D. and Flach, M., Equivariant Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math.6 (2001), 501-570. · Zbl 1052.11077
[6] Burns, D. and Kumon, A., On the Galois structure of arithmetic cohomology II: ray class groups, J. Math. Soc. Japan70 (2018), 481-517. · Zbl 1441.11169
[7] Burns, D., Macias Castillo, D. and Wuthrich, C., On the Galois structure of Selmer groups, Int. Math. Res. Not.2015 (2015), 11909-11933. · Zbl 1334.11043
[8] Curtis, C. W. and Reiner, I., Methods of Representation Theory, Vol. I, John Wiley, New York, 1987. · Zbl 0616.20001
[9] Deligne, P., Seminaire de Geometrie Algebrique du Bois-Marie, SGA 4 1/2, , Springer, New York, 1977. · Zbl 0345.00010
[10] Diederichsen, F. E., Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz, Abh. Math. Sem. Univ. Hamburg14 (1940), 357-412. · Zbl 0023.01302
[11] Flach, M., Euler characteristics in relative K-groups, Bull. Lond. Math. Soc.32 (2000), 272-284. · Zbl 1017.19002
[12] Heller, A. and Reiner, I., Representations of cyclic groups in rings of integers. I, Ann. of Math. (2)76 (1962), 73-92. · Zbl 0108.03101
[13] Heller, A. and Reiner, I., Representations of cyclic groups in rings of integers. II, Ann. of Math. (2)77 (1963), 318-328. · Zbl 0119.03004
[14] Iwasawa, K., “On the 𝜇-invariants of ℤ_ℓ-extensions”, in Number Theory, Algebraic Geometry and Commutative Algebra, Kinokuniya, Tokyo, 1973, 1-11. · Zbl 0281.12005
[15] Khare, C. and Wintenberger, J.-P., Ramification in Iwasawa theory and splitting conjectures, Int. Math. Res. Not.2014 (2014), 194-223. · Zbl 1307.11117
[16] Milne, J. S., Étale Cohomology, Princeton University Press, Princeton, 1980. · Zbl 0433.14012
[17] Neukirch, J., On solvable extensions of number fields, Invent. Math.53 (1979), 135-164. · Zbl 0447.12008
[18] Rzedowski-Calderón, M., Villa Salvador, G. D. and Madan, M. L., Galois module structure of rings of integers, Math. Z.204 (1990), 401-424. · Zbl 0682.12003
[19] Verdier, J. L., Des Catégories Dérivées des Catégories Abéliennes, , Société Mathématique de France, Montrouge, 1996. · Zbl 0882.18010
[20] Washington, L. C., Introduction to Cyclotomic Fields, , Springer, Berlin, 1982. · Zbl 0484.12001
[21] Weibel, C., The norm residue isomorphism theorem, J. Topol.2 (2009), 346-372. · Zbl 1214.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.