×

Hamiltonians generated by Parseval frames. (English) Zbl 1460.81023

Summary: It is known that self-adjoint Hamiltonians with purely discrete eigenvalues can be written as (infinite) linear combination of mutually orthogonal projectors with eigenvalues as coefficients of the expansion. The projectors are defined by the eigenvectors of the Hamiltonians. In some recent papers, this expansion has been extended to the case in which these eigenvectors form a Riesz basis or, more recently, a \(\mathcal{D}\)-quasi basis [the first author et al., J. Math. Phys. 59, No. 3, 033506, 13 p. (2018; Zbl 1466.47018); with G. Bellomonte, J. Phys. A, Math. Theor. 50, No. 14, Article ID 145203, 20 p. (2017; Zbl 1364.81123)], rather than an orthonormal basis. Here we discuss what can be done when these sets are replaced by Parseval frames. This interest is motivated by physical reasons, and in particular by the fact that the mathematical Hilbert space where the physical system is originally defined, contains sometimes also states which cannot really be occupied by the physical system itself. In particular, we show what changes in the spectrum of the observables, when going from orthonormal bases to Parseval frames. In this perspective, we propose the notion of \(E\)-connection for observables. Several examples are discussed.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
47N50 Applications of operator theory in the physical sciences
37K99 Dynamical system aspects of infinite-dimensional Hamiltonian and Lagrangian systems
42C15 General harmonic expansions, frames

References:

[1] Bagarello, F., Quantum Concepts in the Social, Ecological and Biological Sciences (2019), Cambridge: Cambridge University Press, Cambridge · Zbl 1417.81002 · doi:10.1017/9781108684781
[2] Bagarello, F.; Bellomonte, G., Hamiltonians defined by biorthogonal sets, J. Phys. A, 50 (2017) · Zbl 1364.81123 · doi:10.1088/1751-8121/aa60ff
[3] Bagarello, F.; Oliveri, F., A phenomenological operator description of interactions between populations with applications to migration, Math. Models Methods Appl. Sci., 23, 3, 471-492 (2013) · Zbl 1338.37130 · doi:10.1142/S0218202512500534
[4] Bagarello, F.; Oliveri, F., Dynamics of closed ecosystems described by operators, Ecol. Model., 275, 89-99 (2014) · doi:10.1016/j.ecolmodel.2013.12.008
[5] Bagarello, F.; Inoue, H.; Trapani, C., Biorthogonal vectors, sesquilinear forms and some physical operators, J. Math. Phys., 59 (2018) · Zbl 1466.47018 · doi:10.1063/1.5020427
[6] Balan, R.; Casazza, P.; Heil, C.; Landau, Z., Deficits and excesses of frames, Adv. Comput. Math., 18, 93-116 (2003) · Zbl 1029.42030 · doi:10.1023/A:1021360227672
[7] Balazs, P., Basic definition and properties of Bessel multipliers, J. Math. Anal. Appl., 325, 1, 571-585 (2007) · Zbl 1105.42023 · doi:10.1016/j.jmaa.2006.02.012
[8] Casazza, P. G., Custom building finite frames, Contemp. Math., 345, 61-87 (2004) · Zbl 1082.42024 · doi:10.1090/conm/345/06241
[9] Casazza, P. G.; Christensen, O., Frames containing a Riesz basis and preservation of this property under perturbations, SIAM J. Math. Anal., 29, 266-278 (1998) · Zbl 0922.42024 · doi:10.1137/S0036141095294250
[10] Casazza, P. G.; Lynch, R. L., A Brief Introduction to Hilbert Space Frame Theory and Its Applications (2015), San Antonio: AMS Short Course, San Antonio · Zbl 1356.42020
[11] Christensen, O., An Introduction to Frames and Riesz Bases (2003), Boston: Birkhäuser, Boston · Zbl 1017.42022 · doi:10.1007/978-0-8176-8224-8
[12] Cotfas, N.; Gazeau, J.-P., Finite tight frames and some applications, J. Phys. A, 43 (2010) · Zbl 1189.81045 · doi:10.1088/1751-8113/43/19/193001
[13] Cotfas, N.; Gazeau, J.-P.; Vourdas, A., Finite-dimensional Hilbert space and frame quantization, J. Phys. A, 44 (2011) · Zbl 1214.81075 · doi:10.1088/1751-8113/44/17/175303
[14] Gazeau, J.-P., Coherent States in Quantum Physics (2009), Berlin: Wiley-VCH, Berlin · doi:10.1002/9783527628285
[15] Gazeau, J.-P.; Heller, B., Positive-operator valued measure (POVM) quantization, Axioms, 4, 1-29 (2015) · Zbl 1318.81041 · doi:10.3390/axioms4010001
[16] Gazeau, J.-P.; Koide, T.; Noguera, D., Quantum smooth boundary forces from constrained geometries, J. Phys. A, 52 (2019) · Zbl 1509.81538 · doi:10.1088/1751-8121/ab4775
[17] Halmos, P. R., A Hilbert Space Problem Book (1982), New York: Springer, New York · Zbl 0496.47001 · doi:10.1007/978-1-4684-9330-6
[18] Han, D.; Larson Frames, D. R., Bases and Group Representations (2000) · Zbl 0971.42023
[19] Heil, C., A Basis Theory Primer: Expanded Edition (2010), New York: Springer, New York
[20] Merzbacher, E., Quantum Mechanics (1970), New York: Wiley, New York · Zbl 0102.42701
[21] Messiah, A., Quantum Mechanics (1962), Amsterdam: North Holland Publishing Company, Amsterdam · Zbl 0102.42602
[22] Stoeva, D. T.; Balazs, P., Canonical forms of unconditionally convergent multipliers, J. Math. Anal. Appl., 399, 252-279 (2013) · Zbl 1259.42024 · doi:10.1016/j.jmaa.2012.10.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.