×

Quantum smooth boundary forces from constrained geometries. (English) Zbl 1509.81538

Summary: We implement the so-called Weyl-Heisenberg covariant integral quantization in the case of a classical system constrained by a bounded or semi-bounded geometry. The procedure, which is free of the ordering problem of operators, is illustrated with the basic example of the one-dimensional motion of a free particle in an interval, and yields a fuzzy boundary, a position-dependent mass, and an extra potential on the quantum level. The consistency of our quantization is discussed by analyzing the semi-classical phase space portrait of the derived quantum dynamics, which is obtained as a regularization of its original classical counterpart.

MSC:

81S20 Stochastic quantization

References:

[1] da Costa R C T 1981 Quantum mechanics of a constrained particle Phys. Rev. A 23 1983 · doi:10.1103/PhysRevA.23.1982
[2] Schuster P C and Jaffe R L 2003 Quantum mechanics on manifolds embedded in Euclidean space Ann. Phys., NY307 132-43 · Zbl 1037.81034 · doi:10.1016/S0003-4916(03)00080-0
[3] Bergeron H and Gazeau J-P 2014 Integral quantizations with two basic examples Ann. Phys., NY344 43 · Zbl 1343.81157 · doi:10.1016/j.aop.2014.02.008
[4] Bergeron H et al 2017 Weyl-Heisenberg integral quantization(s): a compendium (arXiv:1703.08443)
[5] Gazeau J-P 2018 From classical to quantum models: the regularising rôle of integrals, symmetry and probabilities Found. Phys.48 1648 · Zbl 1411.81038 · doi:10.1007/s10701-018-0219-3
[6] Baldiotti M C, Fresneda R and Gazeau J-P 2015 Dirac distribution and Dirac constraint quantizations Phys. Scr.90 074039 · doi:10.1088/0031-8949/90/7/074039
[7] Dirac P A M 2001 Lectures on Quantum Mechanics (New York: Dover)
[8] Lévy-Leblond J-M 1995 Position-dependent effective mass and Galilean invariance Phys. Rev. A 52 1845 · doi:10.1103/PhysRevA.52.1845
[9] Quesne C 2009 Point canonical transformation versus deformed shape invariance for position-dependent mass Schrödinger equations SIGMA5 046 · Zbl 1160.81377 · doi:10.3842/sigma.2009.046
[10] Cruz S C Y and Rosas-Ortiz O 2013 Dynamical equations, invariants and spectrum generating algebras of mechanical systems with position-dependent mass SIGMA9 004 · Zbl 1291.70005 · doi:10.3842/sigma.2013.004
[11] Mustafa O 2015 Position-dependent mass Lagrangians: nonlocal transformations, Euler-Lagrange invariance and exact solvability J. Phys. A: Math. Theor.48 225206 · Zbl 1417.70015 · doi:10.1088/1751-8113/48/22/225206
[12] Rego-Monteiro M A, Rodrigues L M C S and Curado E M F 2016 Position-dependent mass quantum Hamiltonians: general approach and duality J. Phys. A: Math. Theor.49 125203 · Zbl 1343.81079 · doi:10.1088/1751-8113/49/12/125203
[13] Bravo R and Plyushchay M S 2016 Position-dependent mass, finite-gap systems, and supersymmetry Phys. Rev. D 93 105023 · doi:10.1103/PhysRevD.93.105023
[14] Cariñena J F, Rañada M F and Santander M 2017 Quantization of Hamiltonian systems with a position dependent mass: killing vector fields and Noether momenta approach J. Phys. A: Math. Theor.50 465202 · Zbl 1378.81054 · doi:10.1088/1751-8121/aa8e90
[15] da Costa B G and Borges E P 2018 A position-dependent mass harmonic oscillator and deformed space J. Math. Phys.59 042101 · Zbl 1386.81100 · doi:10.1063/1.5020225
[16] Ali S T, Antoine J-P and Gazeau J-P 2014 Coherent States, Wavelets and their Generalizations(Theoretical and Mathematical Physics) 2nd edn (New York: Springer) · Zbl 1440.81006 · doi:10.1007/978-1-4614-8535-3
[17] Bergeron H, Gazeau J-P and Youssef A 2013 Are the Weyl and coherent state descriptions physically equivalent? Phys. Lett. A 377 598 · Zbl 1428.81101 · doi:10.1016/j.physleta.2012.12.036
[18] Klauder J R 2012 Enhanced quantization: a primer J. Phys. A: Math. Theor.45 285304 · Zbl 1247.81013 · doi:10.1088/1751-8113/45/28/285304
[19] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover) (9th printing) · Zbl 0543.33001
[20] Reed M and Simon B 1975 Methods of Modern Mathematical Physics (New York: Academic) · Zbl 0308.47002
[21] Bergeron H, Czuchry E, Gazeau J-P and Małkiewicz P 2018 Integrable Toda system as a quantum approximation to the anisotropy of the mixmaster universe Phys. Rev. D 98 083512 · doi:10.1103/PhysRevD.98.083512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.