×

Regularized quantum motion in a bounded set: Hilbertian aspects. (English) Zbl 07915181

Summary: It is known that the momentum operator canonically conjugated to the position operator for a particle moving in some bounded interval of the line (with Dirichlet boundary conditions) is not essentially self-adjoint: it has a continuous set of self-adjoint extensions. We prove that essential self-adjointness can be recovered by symmetrically weighting the momentum operator with a positive bounded function approximating the indicator function of the considered interval. This weighted momentum operator is consistently obtained from a similarly weighted classical momentum through the so-called Weyl-Heisenberg covariant integral quantization of functions or distributions.

MSC:

81Sxx General quantum mechanics and problems of quantization
47Bxx Special classes of linear operators
81Rxx Groups and algebras in quantum theory

References:

[1] An apodization function (also called a tapering function or window function) is a function used to smoothly bring a sampled signal down to zero at the edges of the sampled region.
[2] Agarwal, B. S.; Wolf, E., Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics, Phys. Rev. D, 2, 2161, 1970, (I), 2187 (II), 2206 (III) · Zbl 1227.81196
[3] Akhiezer, N. I.; Glazman, I. M., Theory of Linear Operators in Hilbert Space, 1981, Pitman · Zbl 0467.47001
[4] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H., The one-center δ-interaction in one dimension, (Solvable Models in Quantum Mechanics. Solvable Models in Quantum Mechanics, Texts and Monographs in Physics, 1988, Springer: Springer Berlin, Heidelberg) · Zbl 0679.46057
[5] Arthurs, A. M., Momentum operators in quantum mechanics, Proc. Natl. Acad. Sci. USA, 60, 1105-1109, 1968
[6] Bagarello, F., Pseudo-Bosons and Their Coherent States, 2022, Springer · Zbl 1507.81202
[7] (Bagarello, F.; Gazeau, J.-P.; Szafraniec, F. H.; Znojil, M., Non-selfadjoint Operators in Quantum Physics: Mathematical Aspects, 2015, John Wiley and Sons) · Zbl 1329.81021
[8] Bender, C. M., PT Symmetry in Quantum and Classical Physics, 2019, World Scientific: World Scientific Singapore
[9] Berezin, F. A., General concept of quantization, Commun. Math. Phys., 40, 153-174, 1975 · Zbl 1272.53082
[10] Bergeron, H.; Gazeau, J.-P., Integral quantizations with two basic examples, Ann. Phys., 344, 43-68, 2014 · Zbl 1343.81157
[11] Bergeron, H.; Curado, E. M.F.; Gazeau, J.-P.; Rodrigues, Ligia M. C.S., Weyl-Heisenberg integral quantization(s): a compendium, 2017
[12] Brasche, J. F.; Exner, P.; Kuperin, Y. A.; Šeba, P., Schrödinger-operators with singular interactions, J. Math. Anal. Appl., 184, 112-139, 1994 · Zbl 0820.47005
[13] Brezis, H., Analyse fonctionnelle, 1987, Masson
[14] Cohen, L., Generalized phase-space distribution functions, J. Math. Phys., 7, 781-786, 1966
[15] Cohen, L., The Weyl Operator and Its Generalization, Pseudo-Differential Operators: Theory and Applications, vol. 9, 2013, Birkhaüser · Zbl 1393.47001
[16] Daubechies, I.; Grossmann, A., An integral transform related to quantization, J. Math. Phys., 21, 2080-2090, 1980
[17] Daubechies, I.; Grossmann, A.; Reignier, J., An integral transform related to quantization. II. Some mathematical properties, J. Math. Phys., 24, 239-254, 1983
[18] de Gosson, M., The Wigner Transform, Advanced Textbooks in Mathematics, 2017, World Scientific · Zbl 1372.81009
[19] Donoghue, W. F., Distributions and Fourier Transforms, 1969, Academic Press: Academic Press New York · Zbl 0188.18102
[20] Feichtinger, H. G.; Werner, K., Quantization of TF lattice-invariant operators on elementary LCA groups, (Feichtinger, Hans G.; Strohmer, T., Gabor Analysis and Algorithms. Gabor Analysis and Algorithms, Appl. Numer. Harmon. Anal., 1998, Birkhäuser: Birkhäuser Boston), 233-266 · Zbl 0890.42012
[21] Gazeau, J.-P., From classical to quantum models: the regularising rôle of integrals, symmetry and probabilities, Found. Phys., 48, 1648, 2018 · Zbl 1411.81038
[22] Gazeau, J.-P.; Koide, T.; Noguera, D., Quantum position-dependent mass and smooth boundary forces from constrained geometries, J. Phys. A, Math. Theor., 52, Article 445203 pp., 2019 · Zbl 1509.81538
[23] Gazeau, J.-P.; Hussin, V.; Moran, J.; Zelaya, K., Quantum and semi-classical aspects of confined systems with variable mass, J. Phys. A, Math. Theor., 53, Article 505306 pp., 2020 · Zbl 1519.81348
[24] He, Z.; Wong, M. W., Localization operators associated to square integrable group representations, Panam. Math. J., 6, 93-104, 1996 · Zbl 0848.42025
[25] Hudson, R. L., When is the Wigner quasi-probability density non-negative?, Rep. Math. Phys., 6, 249-252, 1974 · Zbl 0324.60018
[26] Klauder, J. R., Continuous-representation theory II. Generalized relation between quantum and classical dynamics, J. Math. Phys., 4, 1058-1073, 1963 · Zbl 0127.18701
[27] Klauder, J. R., Continuous-representation theory III. On functional quantization of classical systems, J. Math. Phys., 5, 177-187, 1964 · Zbl 0137.23901
[28] Klauder, J. R., Enhanced quantization: a primer, J. Phys. A, Math. Theor., 45, 285304-1-8, 2012 · Zbl 1247.81013
[29] Klauder, J. R., Enhanced Quantization: Particles, Fields and Gravity, 2015, World Scientific · Zbl 1309.81008
[30] Luef, F.; Skrettingland, E., Convolutions for localization operators, J. Math. Pures Appl., 118, 288-316, 2018 · Zbl 1486.47086
[31] Rudin, W., Functional Analysis, 1991, McGraw-Hill · Zbl 0867.46001
[32] Šeba, P., Some remarks on the \(\delta^\prime \)-interaction in one dimension, Rep. Math. Phys., 24, 111-120, 1986 · Zbl 0638.70016
[33] Simon, B., Trace Ideals and Their Applications, 2005, American Mathematical Society: American Mathematical Society Providence · Zbl 1074.47001
[34] Soto, F.; Claverie, P., When is the Wigner function of multidimensional systems nonnegative?, J. Math. Phys., 24, 97-100, 1983
[35] Weidmann, J., Linear Operators in Hilbert Spaces, 1980, Springer · Zbl 0434.47001
[36] Werner, R., Quantum harmonic analysis on phase space, J. Math. Phys., 25, 1404-1411, 1984 · Zbl 0557.43003
[37] Wigner, E. P., On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40, 749-759, 1932 · JFM 58.0948.07
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.