×

Limit theory and robust evaluation methods for the extremal properties of GARCH\((p,q)\) processes. (English) Zbl 1499.62022

Summary: Generalized autoregressive conditionally heteroskedastic (GARCH) processes are widely used for modelling financial returns, with their extremal properties being of interest for market risk management. For GARCH\((p,q)\) processes with \(\max (p,q)=1\) all extremal features have been fully characterised, but when \(\max(p,q)\ge 2\) much remains to be found. Previous research has identified that both marginal and dependence extremal features of strictly stationary GARCH\((p,q)\) processes are determined by a multivariate regular variation property and tail processes. Currently there are no reliable methods for evaluating these characterisations, or even assessing the stationarity, for the classes of GARCH\((p,q)\) processes that are used in practice, i.e., with unbounded and asymmetric innovations. By developing a mixture of new limit theory and particle filtering algorithms for fixed point distributions we produce novel and robust evaluation methods for all extremal features for all GARCH\((p,q)\) processes, including ARCH and IGARCH processes. We investigate our methods’ performance when evaluating the marginal tail index, the extremogram and the extremal index, the latter two being measures of temporal dependence.

MSC:

62-08 Computational methods for problems pertaining to statistics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G32 Statistics of extreme values; tail inference
60G70 Extreme value theory; extremal stochastic processes
60G10 Stationary stochastic processes

References:

[1] Azzalini, A.; Capitanio, A., Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution, J. Roy. Stat. Soc. B, 65, 2, 367-389 (2003) · Zbl 1065.62094 · doi:10.1111/1467-9868.00391
[2] Basrak, B.; Segers, J., Regularly varying multivariate time series, Stoch. Process. Appl., 119, 1055-1080 (2009) · Zbl 1161.60319 · doi:10.1016/j.spa.2008.05.004
[3] Basrak, B., Segers, J.: Erratum to: Regularly varying multivariate time series [Stochastic Process. Appl. 119 (2009) 1055-1080]. Stochastic Processes and their Applications 121(4), 896-898 (2011) · Zbl 1229.60065
[4] Basrak, B.; Davis, RA; Mikosch, T., Regular variation of GARCH processes, Stoch. Process. Appl., 99, 1, 95-115 (2002) · Zbl 1060.60033 · doi:10.1016/S0304-4149(01)00156-9
[5] Bollerslev, T., Generalized autoregressive conditional heteroskedasticity, J. Econ., 31, 307-327 (1986) · Zbl 0616.62119 · doi:10.1016/0304-4076(86)90063-1
[6] Bougerol, P.; Picard, N., Stationarity of GARCH processes and of some nonnegative time series, J. Econom., 52, 115-127 (1992) · Zbl 0746.62087 · doi:10.1016/0304-4076(92)90067-2
[7] Breidt, JF; Davis, RA, Extremes of stochastic volatility models, Ann. Appl. Probab., 8, 3, 664-675 (1998) · Zbl 0941.60069 · doi:10.1214/aoap/1028903446
[8] Buraczewski, D.; Damek, E.; Mikosch, T., Stochastic Models with Power-Law Tails (2016), Cham: Springer, Cham · Zbl 1357.60004 · doi:10.1007/978-3-319-29679-1
[9] Collamore, JF; Mentemeier, S., Large excursions and conditioned laws for recursive sequences generated by random matrices, Ann. Probab., 46, 4, 2064-2120 (2018) · Zbl 1430.60073 · doi:10.1214/17-AOP1221
[10] Collamore, JF; Diao, G.; Vidyashankar, AN, Rare event simulation for processes generated via stochastic fixed point equations, Ann. Appl. Probab., 24, 5, 2143-2175 (2014) · Zbl 1316.65015 · doi:10.1214/13-AAP974
[11] Davis, RA; Mikosch, T.; Andersen, T.; Davis, R.; Kreiss, J.; Mikosch, T., Extreme value theory for GARCH processes, Handbook of Financial Time Series, 187-200 (2009), New York: Springer, New York · Zbl 1178.62094 · doi:10.1007/978-3-540-71297-8_8
[12] Davis, RA; Mikosch, T., The extremogram: a correlogram for extreme events, Bernoulli, 4, 977-1009 (2009) · Zbl 1200.62104
[13] DelMoral, P.; Guionnet, A., On the stability of interacting processes with applications to filtering and genetic algorithms, Annales de l’Institut Henri Poincaré Probability (B) and Statistics, 37, 2, 155-194 (2001) · Zbl 0990.60005 · doi:10.1016/S0246-0203(00)01064-5
[14] Del Moral, P., Miclo, L.: Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering. In: Seminaire de probabilites XXXIV, pp. 1-145. Springer (2000) · Zbl 0963.60040
[15] Del Moral, P.; Miclo, L., Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups, ESAIM: Probab. Stat., 7, 171-208 (2003) · Zbl 1040.81009 · doi:10.1051/ps:2003001
[16] Doucet, A.; Godsill, S.; Andrieu, C., On sequential Monte Carlo sampling methods for Bayesian filtering, Stat. Comput., 10, 3, 197-208 (2000) · doi:10.1023/A:1008935410038
[17] Ehlert, A.; Fiebig, UR; Janssen, A.; Schlather, M., Joint extremal behavior of hidden and observable time series with applications to GARCH processes, Extremes, 18, 1, 109-140 (2015) · Zbl 1318.60057 · doi:10.1007/s10687-014-0206-9
[18] Ferro, C.; Segers, J., Inference for clusters of extreme values, J. Roy. Stat. Soc. B, 65, 545-556 (2003) · Zbl 1065.62091 · doi:10.1111/1467-9868.00401
[19] Francq, C.; Sucarrat, G., Volatility estimation when the zero-process is nonstationary, J. Bus. Econ. Stat., 1, 1-14 (2021) · Zbl 1542.62136 · doi:10.1080/07350015.2021.1999821
[20] Francq, C., Zakoïan, J.M.: GARCH Models: Structure. Statistical Inference and Financial Applications. John Wiley & Sons Ltd, Chichester, United Kingdom (2010) · Zbl 1431.62004
[21] Francq, C.; Zakoïan, JM, Inference in nonstationary asymmetric GARCH models, Ann. Stat., 41, 4, 1970-1998 (2013) · Zbl 1277.62210 · doi:10.1214/13-AOS1132
[22] Grimmett, G., Stirzaker, D.: Probability and Random Processes, 3rd edn. Oxford University Press, Oxford (2001) · Zbl 1015.60002
[23] de Haan, L.; Resnick, SI; Rootzén, H.; de Vries, CG, Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes, Stoch. Process. Appl., 32, 213-224 (1989) · Zbl 0679.60029 · doi:10.1016/0304-4149(89)90076-8
[24] Hsing, T.; Hüsler, J.; Leadbetter, MR, On the exceedance point process for a stationary sequence, Probab. Theory Relat. Fields, 78, 97-112 (1988) · Zbl 0619.60054 · doi:10.1007/BF00718038
[25] Janssen, A.: On some connections between light tails, regular variation and extremes. PhD thesis, University of Gottingen (2010) · Zbl 1222.62060
[26] Kesten, H., Random difference equations and renewal theory for products of random matrices, Acta Math., 131, 207-248 (1973) · Zbl 0291.60029 · doi:10.1007/BF02392040
[27] Laurini, F.; Tawn, JA, The extremal index for GARCH(1,1) processes, Extremes, 15, 4, 511-529 (2012) · Zbl 1329.60154 · doi:10.1007/s10687-012-0148-z
[28] Laurini, F., Fearnhead, P., Tawn, J.A.: Supplementary material to: Limit theory and robust evaluation methods for the extremal properties of GARCH \((p, q)\) processes. Available at journal website (2022) · Zbl 1499.62022
[29] Ledford, AW; Tawn, JA, Diagnostics for dependence within time series extremes, J. Roy. Stat. Soc. B, 65, 2, 521-543 (2003) · Zbl 1065.62156 · doi:10.1111/1467-9868.00400
[30] Mikosch, T.; Rezapour, M., Stochastic volatility models with possible extremal clustering, Bernoulli, 19, 5, 1688-1713 (2013) · Zbl 1286.91144 · doi:10.3150/12-BEJ426
[31] Mikosch, T.; Stărică, C., Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process, Ann. Stat., 28, 1427-1451 (2000) · Zbl 1105.62374 · doi:10.1214/aos/1015957401
[32] Planinić, H.; Soulier, P., The tail process revisited, Extremes, 21, 4, 551-579 (2018) · Zbl 1417.60043 · doi:10.1007/s10687-018-0312-1
[33] Resnick, SI, Extreme Values, Regular Variation, and Point Processes (1987), New York: Springer, New York · Zbl 0633.60001 · doi:10.1007/978-0-387-75953-1
[34] Rootzén, H., Maxima and exceedances of stationary Markov chains, Adv. Appl. Probab., 20, 371-390 (1988) · Zbl 0654.60023 · doi:10.2307/1427395
[35] Segers, J., Functionals of clusters of extremes, Adv. Appl. Probab., 35, 1028-1045 (2003) · Zbl 1043.60043 · doi:10.1239/aap/1067436333
[36] Seneta, E., Non-negative Matrices and Markov Chains (1981), New York: Springer, New York · Zbl 0471.60001 · doi:10.1007/0-387-32792-4
[37] Smith, RL; Weissman, I., Estimating the extremal index, J. Roy. Stat. Soc. B, 56, 515-528 (1994) · Zbl 0796.62084
[38] Smith, RL; Tawn, JA; Coles, SG, Markov chain models for threshold exceedances, Biometrika, 84, 2, 249-268 (1997) · Zbl 0891.60047 · doi:10.1093/biomet/84.2.249
[39] Taylor, SJ, Modelling Financial Time Series (1986), Chichester: Wiley, Chichester · Zbl 1130.91345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.