×

Charges in the UV completion of neutral electrodynamics. (English) Zbl 07716801

Summary: A theory with a non-compact form-symmetry is described by two closed form fields of degrees \(k\) and \(d - k\). Effective theory examples are non-linear electrodynamics, a photon field coupled to a neutron field, and a low energy Goldstone boson. We show these models cannot be completed in the UV without breaking the non-compact form-symmetry down to a compact one. This amounts to the existence of electric or magnetic charges. A theory with an unbroken non-compact \(k\)-form symmetry is massless and free.

MSC:

81V10 Electromagnetic interaction; quantum electrodynamics
81T12 Effective quantum field theories

References:

[1] Russo, JG; Townsend, PK, Nonlinear electrodynamics without birefringence, JHEP, 01, 039 (2023) · Zbl 1540.81175 · doi:10.1007/JHEP01(2023)039
[2] A. Guerrieri, H. Murali, J. Penedones and P. Vieira, Where is M-theory in the space of scattering amplitudes?, arXiv:2212.00151 [INSPIRE]. · Zbl 07716770
[3] M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A144 (1934) 425 [INSPIRE]. · Zbl 0008.42203
[4] Gaiotto, D.; Kapustin, A.; Seiberg, N.; Willett, B., Generalized Global Symmetries, JHEP, 02, 172 (2015) · Zbl 1388.83656 · doi:10.1007/JHEP02(2015)172
[5] Casini, H.; Huerta, M.; Magán, JM; Pontello, D., Entropic order parameters for the phases of QFT, JHEP, 04, 277 (2021) · Zbl 1462.81127 · doi:10.1007/JHEP04(2021)277
[6] Casini, H.; Magán, JM, On completeness and generalized symmetries in quantum field theory, Mod. Phys. Lett. A, 36, 2130025 (2021) · doi:10.1142/S0217732321300251
[7] Benedetti, V.; Casini, H.; Magán, JM, Generalized symmetries and Noether’s theorem in QFT, JHEP, 08, 304 (2022) · Zbl 1522.81454 · doi:10.1007/JHEP08(2022)304
[8] Casini, H.; Magán, JM; Martínez, PJ, Entropic order parameters in weakly coupled gauge theories, JHEP, 01, 079 (2022) · Zbl 1521.81436 · doi:10.1007/JHEP01(2022)079
[9] Benedetti, V.; Casini, H.; Magán, JM, Generalized symmetries of the graviton, JHEP, 05, 045 (2022) · Zbl 1522.83056 · doi:10.1007/JHEP05(2022)045
[10] G. de Rham, Differentiable manifolds, volume 266 of Grundlehren der mathematischen wissenschaften [fundamental principles of mathematical sciences], (1984). · Zbl 0534.58003
[11] P.G. Federbush and K.A. Johnson, Uniqueness Property of the Twofold Vacuum Expectation Value, Phys. Rev.120 (1960) 1926 [INSPIRE]. · Zbl 0090.19902
[12] D. Buchholz and K. Fredenhagen, Dilations and Interaction, J. Math. Phys.18 (1977) 1107 [INSPIRE].
[13] Argyres, PC; Plesser, MR; Seiberg, N.; Witten, E., New N=2 superconformal field theories in four-dimensions, Nucl. Phys. B, 461, 71 (1996) · Zbl 1004.81557 · doi:10.1016/0550-3213(95)00671-0
[14] Hofman, DM; Iqbal, N., Goldstone modes and photonization for higher form symmetries, SciPost Phys., 6, 006 (2019) · doi:10.21468/SciPostPhys.6.1.006
[15] G. Mack, All unitary ray representations of the conformal group SU(2,2) with positive energy, Commun. Math. Phys.55 (1977) 1 [INSPIRE]. · Zbl 0352.22012
[16] W. Siegel, All Free Conformal Representations in All Dimensions, Int. J. Mod. Phys. A4 (1989) 2015 [INSPIRE].
[17] Minwalla, S., Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys., 2, 783 (1998) · Zbl 1041.81534 · doi:10.4310/ATMP.1998.v2.n4.a4
[18] Costa, MS; Hansen, T., Conformal correlators of mixed-symmetry tensors, JHEP, 02, 151 (2015) · Zbl 1388.53102 · doi:10.1007/JHEP02(2015)151
[19] Bostelmann, H.; D’Antoni, C.; Morsella, G., On dilation symmetries arising from scaling limits, Commun. Math. Phys., 294, 21 (2010) · Zbl 1207.81050 · doi:10.1007/s00220-009-0899-9
[20] S. Weinberg and E. Witten, Limits on Massless Particles, Phys. Lett. B96 (1980) 59 [INSPIRE].
[21] J. Polchinski, Monopoles, duality, and string theory, Int. J. Mod. Phys. A19S1 (2004) 145 [hep-th/0304042] [INSPIRE]. · Zbl 1080.81582
[22] Banks, T.; Seiberg, N., Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.084019
[23] Heidenreich, B., Non-invertible global symmetries and completeness of the spectrum, JHEP, 09, 203 (2021) · Zbl 1472.81232 · doi:10.1007/JHEP09(2021)203
[24] R.E. Peierls, The commutation laws of relativistic field theory, Proc. Roy. Soc. Lond. A214 (1952) 143 [INSPIRE]. · Zbl 0048.44606
[25] B.S. DeWitt, Quantum Theory of Gravity. 2. The Manifestly Covariant Theory, Phys. Rev.162 (1967) 1195 [INSPIRE]. · Zbl 0161.46501
[26] B. de Witt, Dynamical theory of groups and fields, Relativity, groups and topology, Publ. Gordon and Breach (1963).
[27] Achucarro, A.; de Carlos, B.; Casas, JA; Doplicher, L., De Sitter vacua from uplifting D-terms in effective supergravities from realistic strings, JHEP, 06, 014 (2006) · doi:10.1088/1126-6708/2006/06/014
[28] H.J. Groenewold, On the Principles of elementary quantum mechanics, Physica12 (1946) 405 [INSPIRE]. · Zbl 0060.45002
[29] K. Baumann, When Is a Field Theory a Generalized Free Field?, Commun. Math. Phys.43 (1975) 221 [INSPIRE]. · Zbl 1358.81135
[30] R. Jost, Properties of wightman functions, Lectures on Field Theory: The many Body Problem, Academic Press, New York, U.S.A. (1961). · Zbl 0111.45404
[31] K. Pohlmeyer, The jost-schroer theorem for zero-mass fields, Commun. Math. Phys.12 (1969) 204 [INSPIRE]. · Zbl 0177.56902
[32] D. Robinson, Support of field in momentum space, Helv. Phys. Acta35 (1962). · Zbl 0108.22302
[33] Buchholz, D.; Longo, R.; Rehren, K-H, Causal Lie Products of Free Fields and the Emergence of Quantum Field Theory, Found. Phys., 52, 108 (2022) · Zbl 1512.81057 · doi:10.1007/s10701-022-00629-y
[34] A. Truman, Spectrality, cluster decomposition and small distance properties in wightman field theory, J. Math. Phys.15 (1974) 1680 [INSPIRE].
[35] S. Axler, P. Bourdon and R. Wade, Harmonic function theory, vol. 137, Springer Science & Business Media (2013). · Zbl 0959.31001
[36] Gaberdiel, MR, An introduction to conformal field theory, Rept. Prog. Phys., 63, 607 (2000) · doi:10.1088/0034-4885/63/4/203
[37] R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys.5 (1964) 848 [INSPIRE]. · Zbl 0139.46003
[38] R.F. Streater and A.S. Wightman, PCT, spin and statistics, and all that, Princeton University Press (2000) [INSPIRE]. · Zbl 1026.81027
[39] Guido, D., Modular theory for the von Neumann algebras of Local Quantum Physics, Contemp. Math., 534, 97 (2011) · Zbl 1219.46062 · doi:10.1090/conm/534/10523
[40] K. Fredenhagen and J. Hertel, Local Algebras of Observables and Point-Like Localized Fields, Commun. Math. Phys.80 (1981) 555 [INSPIRE]. · Zbl 0472.46051
[41] J. Rehberg and M. Wollenberg, Quantum fields as pointlike localized objects, Math. Nachr.125 (1986) 259. · Zbl 0617.46080
[42] H. Bostelmann, Phase space properties and the short distance structure in quantum field theory, J. Math. Phys.46 (2005) 052301 [math-ph/0409070] [INSPIRE]. · Zbl 1110.81132
[43] Buchholz, D.; Verch, R., Scaling algebras and renormalization group in algebraic quantum field theory, Rev. Math. Phys., 7, 1195 (1995) · Zbl 0842.46052 · doi:10.1142/S0129055X9500044X
[44] Bostelmann, H.; D’Antoni, C.; Morsella, G., Scaling algebras and pointlike fields: A nonperturbative approach to renormalization, Commun. Math. Phys., 285, 763 (2009) · Zbl 1155.81029 · doi:10.1007/s00220-008-0613-3
[45] H. Bostelmann, Operator product expansions as a consequence of phase space properties, J. Math. Phys.46 (2005) 082304 [math-ph/0502004] [INSPIRE]. · Zbl 1110.81133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.