×

Scaling algebras and pointlike fields. A nonperturbative approach to renormalization. (English) Zbl 1155.81029

Originally, renormalization was used in QFT to interpret infinite perturbative expressions. In the past thirty years an elegant powerful nonpertubative technique has been developed called Renormalization Group, pioneered by Wilson, Kadanoff and Fisher. It is a way to investigate the short distance behavior of a given field theoretical model and in particular has led to the discovery of asymptotic freedom in QCD. The present approach to renormalization is based on the results of Buchholz and Verch (BV) published during 1995-98 in the context of algebraic quantum field theory. The term algebraic means that one starts out from a local net of \(C^*\) algebras, a theory that was initiated by Haag, Kastler, Doplicher and Roberts. BV obtained scaling limit states as weak-* cluster points whose existence is guaranteed by the Alaoglu-Bourbaki Theorem.
But now, in addition the existence of fields localized at spacetime points and associated to these algebras is assumed, in a way that was previously (2005) proposed and studied by Bostelmann under certain assumptions called phase space conditions. For the fields as well as for their operator product expansions, a well-defined limiting procedure similar to that of BV is established. However, compared to the work of BV the approach chosen here is somewhat more general. The authors also study symmetry actions in the scaling limit. For suitable limit states, the group of scaling transformations leads to a dilation symmetry of the limit theory. It would be worthwhile to extend the results to charge carrying fields associated with a local net in the sense of Doplicher and Roberts.

MSC:

81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
81T17 Renormalization group methods applied to problems in quantum field theory
81T05 Axiomatic quantum field theory; operator algebras

References:

[1] Baumann K.: On the two-point functions of interacting Wightman fields. J. Math. Phys. 27, 828–831 (1986) · doi:10.1063/1.527188
[2] Bernard C., Duncan A., LoSecco J., Weinberg S.: Exact spectral-function sum rules. Phys. Rev. D12, 792–804 (1975)
[3] Bostelmann, H., D’Antoni, C., Morsella, G.: Work in progress
[4] Boerner H.: Representations of Groups. North-Holland, Amsterdam (1963) · Zbl 0112.26301
[5] Bostelmann, H.: Lokale Algebren und Operatorprodukte am Punkt. Thesis, Universität Göttingen (2000). Available online at http://webdoc.sub.gwdg.de/diss/2000/bostelmann/
[6] Bostelmann H.: Phase space properties and the short distance structure in quantum field theory. J. Math. Phys. 46, 052301 (2005) · Zbl 1110.81132 · doi:10.1063/1.1883313
[7] Bostelmann H.: Operator product expansions as a consequence of phase space properties. J. Math. Phys. 46, 082304 (2005) · Zbl 1110.81133 · doi:10.1063/1.2007567
[8] Buchholz D.: Quarks, gluons, colour: facts or fiction?. Nucl. Phys. B 469, 333 (1996) · Zbl 1004.81515 · doi:10.1016/0550-3213(96)00143-5
[9] Buchholz D., Verch R.: Scaling algebras and renormalization group in algebraic quantum field theory. Rev. Math. Phys. 7, 1195–1239 (1995) · Zbl 0842.46052 · doi:10.1142/S0129055X9500044X
[10] Buchholz D., Verch R.: Scaling algebras and renormalization group in algebraic quantum field theory. II. Instructive examples. Rev. Math. Phys. 10, 775–800 (1998) · Zbl 0916.46056 · doi:10.1142/S0129055X98000252
[11] Dell’Antonio G.F.: On dilation invariance and the Wilson expansion. Nuovo Cimento 12A, 756–762 (1972)
[12] D’Antoni C., Morsella G.: Scaling algebras and superselection sectors: Study of a class of models. Rev. Math. Phys. 18, 565 (2006) · Zbl 1110.81134 · doi:10.1142/S0129055X06002723
[13] D’Antoni C., Morsella G., Verch R.: Scaling algebras for charged fields and short-distance analysis for localizable and topological charges. Ann. Henri Poincare 5, 809–870 (2004) · Zbl 1065.81084 · doi:10.1007/s00023-004-0183-7
[14] Douglas R.G.: On the measure-theoretic character of an invariant mean. Proc. Amer. Math. Soc. 16, 30–36 (1965) · Zbl 0151.18903 · doi:10.1090/S0002-9939-1965-0169983-0
[15] Doplicher S., Roberts J.E.: Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131, 51–107 (1990) · Zbl 0734.46042 · doi:10.1007/BF02097680
[16] Dunford N., Schwartz J.T.: Linear Operators, Part I: General theory. Interscience, New York (1958) · Zbl 0084.10402
[17] Driessler W., Summers S.J.: Central decomposition of Poincaré-invariant nets of local field algebras and absence of spontaneous breaking of the Lorentz group. Ann. Inst. H. Poincaré Phys. Theor. 43, 147–166 (1985) · Zbl 0609.47059
[18] Dybalski, W.: A sharpened nuclearity condition and the uniqueness of the vacuum in QFT. To appear in Commun. Math. Phys. 2008, doi: 10.1007/s00220-008-0514-5 · Zbl 1156.81030
[19] Fredenhagen K., Hertel J.: Local algebras of observables and pointlike localized fields. Commun. Math. Phys. 80, 555–561 (1981) · Zbl 0472.46051 · doi:10.1007/BF01941663
[20] Fredenhagen K., Haag R.: Generally covariant quantum field theory and scaling limits. Commun. Math. Phys. 108, 91–115 (1987) · Zbl 0626.46063 · doi:10.1007/BF01210704
[21] Fredenhagen K., Rehren K.-H., Seiler E.: Quantum field theory: Where we are. Lect. Notes Phys. 721, 61–87 (2007) · Zbl 1135.81002 · doi:10.1007/978-3-540-71117-9_4
[22] Gell-Mann M., Low F.E.: Quantum electrodynamics at small distances. Phys. Rev. 95, 1300–1312 (1954) · Zbl 0057.21401 · doi:10.1103/PhysRev.95.1300
[23] Haag R.: Local Quantum Physics. 2nd edition. Springer, Berlin (1996) · Zbl 0857.46057
[24] Hollands S.: The operator product expansion for perturbative quantum field theory in curved spacetime. Commun. Math. Phys 273, 1–36 (2007) · Zbl 1142.81016 · doi:10.1007/s00220-007-0230-6
[25] Kadison R.V., Ringrose J.R.: Fundamentals of the Theory of Operator Algebras, Volume II: Advanced Theory. Academic Press, Orlando (1997) · Zbl 0991.46031
[26] Lewis D.R.: An upper bound for the projection constant. Proc. Amer. Math. Soc. 103, 1157–1160 (1988) · Zbl 0659.46010 · doi:10.1090/S0002-9939-1988-0954999-X
[27] Mitchell T.: Fixed points and multiplicative left invariant means. Trans. Amer. Math. Soc. 122, 195–202 (1966) · Zbl 0146.12101 · doi:10.1090/S0002-9947-1966-0190249-2
[28] Pohlmeyer K.: The Jost-Schroer theorem for zero-mass fields. Commun. Math. Phys. 12, 204–211 (1969) · Zbl 0177.56902 · doi:10.1007/BF01661574
[29] Schaflitzel R.: Direct integrals of unitary equivalent representations of nonseparable C* algebras. J. Funct. Anal. 111, 62–75 (1963) · Zbl 0813.46052 · doi:10.1006/jfan.1993.1004
[30] Saks, S.: Theory of the Integral. Warsaw: Lwau/New York: Stechert, 1937 · Zbl 0017.30004
[31] Strocchi F.: Selected Topics on the General Properties of Quantum Field Theory. World Scientific, Singapore (1993) · Zbl 0817.46073
[32] Wilson K.G.: Non-lagrangian models of current algebra. Phys. Rev. 179, 1499–1512 (1969) · doi:10.1103/PhysRev.179.1499
[33] Wilson K.G., Zimmermann W.: Operator product expansions and composite field operators in the general framework of quantum field theory. Commun. Math. Phys. 24, 87–106 (1972) · Zbl 0235.47017 · doi:10.1007/BF01878448
[34] Wils W.: Direct integrals of Hilbert spaces I. Math. Scand. 26, 73–88 (1970) · Zbl 0194.43504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.