×

Extensions of a Diophantine triple by adjoining smaller elements. (English) Zbl 1496.11050

Given a positive integer \(m\), a Diophantine \(m\)-tuple is a set of integers \(\{a_1, a_2, \ldots, a_m\}\) with the property that \(a_ia_j+ 1\) is a perfect square for all \(1\leq i<j\leq m.\) In [A. Dujella, J. Reine Angew. Math. 566, 183–214 (2004; Zbl 1037.11019)] it is proved by the second author that the definition above is satisfied for no \(m\)-tuple with \(m\leq 6\). Then, in [B. He et al., Trans. Am. Math. Soc. 371, No. 9, 6665–6709 (2019; Zbl 1430.11044)], it is shown that it necessarily holds \(m\leq 4.\) To see a complete bibliography on Diophantine sets, one can see [A. Dujella, Diophantine \(m\)-tuples. https://web.math.pmf.unizg.hr/~duje/ref.html]. The most of the works in the literature are devoted to extensions of Diophantine triples by adjoining a fourth element greater than the three already known. The following conjecture is the currently open question of greatest interest in this are, which was posed implicitly in [J. Arkin et al., Fibonacci Q. 17, 333–339 (1979; Zbl 0418.10021); D. E. Gibbs, Proc. Am. Math. Soc. 70, 103–108 (1978; Zbl 0404.18011); A. Dujella, J. Number Theory 89, No. 1, 126–150 (2001; Zbl 1010.11019)].
Conjecture 1.1: Any Diophantine triple \(\{a, b, c\}\) has unique extension to a Diophantine quadruple \(\{a, b, c, d\}\) by an element \(d > \max\{a, b, c\}.\)
In their previous work [Period. Math. Hung. 82, No. 1, 56–68 (2021; Zbl 1474.11078)], by studding on the extendibility of Diophantine triples by an integer smaller than all elements of the initial triple, the present authors stated that:
Conjecture 1.2: Suppose that \(\{a_1,b,c,d\}\) is a Diophantine quadruple with \(a_1 <b<c<d.\) Then, \(\{a_2,b,c,d\} \) is not a Diophantine quadruple for any integer \(a_2\) with \(a_1\neq a_2<b.\)
In the paper under review, continuing their studied, the authors proved:
Main Theorem: Assume that \(\{a_1,b,c,d\}\) and \(\{a_2,b,c,d\}\) are Diophantine quadruples with \(a_1<a_2< b < c <d\). Then, the following holds:
(1)
\(a_2> \max \{36a_1^3,300a_1^2\}.\)
(2)
\(b< a_2^{3/2} \) for \(a_1 \geq 1\), and \(b< a_2^{4/3}\) for \(a_1 \geq 2\) or \(a_1=1\) and \(a_2 < 4 \cdot 10^5\).
(3)
\(a_2 > 24^3 = 13824.\)
(4)
\( 16 a_1^2 b^3 < c < 16 a_2 b^3.\)
They, also showed that there are only finitely many quintuples \(\{a_1,a_2,b,c,d\}\) as above, and have obtained some interesting consequences of their theorem, including the Corollary 1.6, which states that Conjecture 1.2 implies Conjecture 1.1.

MSC:

11D09 Quadratic and bilinear Diophantine equations
11B37 Recurrences
11J68 Approximation to algebraic numbers

Software:

PARI/GP
Full Text: DOI

References:

[1] Arkin, J.; Hoggatt, VE; Strauss, EG, On Euler’s solution of a problem of Diophantus, Fibonacci Q., 17, 333-339 (1979) · Zbl 0418.10021
[2] Baker, A.; Davenport, H., The equations \(3x^2-2=y^2\) and \(8x^2-7=z^2\), Q. J. Math. Oxf. Ser., 2, 20, 129-137 (1969) · Zbl 0177.06802 · doi:10.1093/qmath/20.1.129
[3] Bugeaud, Y.; Dujella, A.; Mignotte, M., On the family of Diophantine triples \(\{k-1, k+1,16k^3-4k\}\), Glasg. Math. J., 49, 333-344 (2007) · Zbl 1168.11007 · doi:10.1017/S0017089507003564
[4] Cipu, M., Further remarks on Diophantine quintuples, Acta Arith., 168, 201-219 (2015) · Zbl 1347.11028 · doi:10.4064/aa168-3-1
[5] Cipu, M.; Dujella, A.; Fujita, Y., Diophantine triples with largest two elements in common, Period. Math. Hung., 82, 56-68 (2021) · Zbl 1474.11078 · doi:10.1007/s10998-020-00331-4
[6] Cipu, M.; Filipin, A.; Fujita, Y., Bounds for Diophantine quintuples II, Publ. Math. Debr., 88, 59-78 (2016) · Zbl 1363.11048 · doi:10.5486/PMD.2016.7257
[7] Cipu, M.; Filipin, A.; Fujita, Y., Diophantine pairs that induce certain Diophantine triples, J. Number Theory, 200, 433-475 (2020) · Zbl 1475.11046 · doi:10.1016/j.jnt.2019.09.019
[8] Cipu, M.; Fujita, Y.; Mignotte, M., Two-parameter families of uniquely extendable Diophantine triples, Sci. China Math., 61, 421-438 (2018) · Zbl 1419.11054 · doi:10.1007/s11425-015-0638-0
[9] Cipu, M.; Fujita, Y.; Miyazaki, T., On the number of extensions of a Diophantine triple, Int. J. Number Theory, 14, 899-917 (2018) · Zbl 1429.11065 · doi:10.1142/S1793042118500549
[10] Dujella, A., An absolute bound for the size of Diophantine \(m\)-tuples, J. Number Theory, 89, 126-150 (2001) · Zbl 1010.11019 · doi:10.1006/jnth.2000.2627
[11] Dujella, A., There are only finitely many Diophantine quintuples, J. Reine Angew. Math., 566, 183-224 (2004) · Zbl 1037.11019
[12] Dujella, A.: Diophantine \(m\)-tuples. https://web.math.pmf.unizg.hr/ duje/ref.html · Zbl 1046.11034
[13] Dujella, A.; Pethő, A., A generalization of a theorem of Baker and Davenport, Q. J. Math. Oxf. Ser. (2), 49, 1998, 291-306 (1998) · Zbl 0911.11018 · doi:10.1093/qmathj/49.3.291
[14] Filipin, A.; Fujita, Y.; Togbé, A., The extendibility of Diophantine pairs I: the general case, Glas. Mat. Ser. III, 49, 69, 25-36 (2014) · Zbl 1308.11034 · doi:10.3336/gm.49.1.03
[15] Filipin, A.; Fujita, Y.; Togbé, A., The extendibility of Diophantine pairs II: examples, J. Number Theory, 145, 604-631 (2014) · Zbl 1308.11033 · doi:10.1016/j.jnt.2014.06.020
[16] Fujita, Y., The extensibility of Diophantine pairs \(\{k-1, k+1\}\), J. Number Theory, 128, 322-353 (2009) · Zbl 1151.11015 · doi:10.1016/j.jnt.2007.03.013
[17] Fujita, Y., Any Diophantine quintuple contains a regular Diophantine quadruple, J. Number Theory, 129, 1678-1697 (2009) · Zbl 1218.11031 · doi:10.1016/j.jnt.2009.01.001
[18] Fujita, Y., The number of irregular Diophantine quadruples for a fixed Diophantine pair or triple, Contemp. Math., 768, 105-118 (2021) · Zbl 1520.11040 · doi:10.1090/conm/768/15457
[19] Fujita, Y.; Miyazaki, T., The regularity of Diophantine quadruples, Trans. Am. Math. Soc., 370, 3803-3831 (2018) · Zbl 1417.11024 · doi:10.1090/tran/7069
[20] Gibbs, PE, Comput. Bull., 17, 16 (1978)
[21] He, B.; Togbé, A.; Ziegler, V., There is no Diophantine quintuple, Trans. Am. Math. Soc., 371, 6665-6709 (2019) · Zbl 1430.11044 · doi:10.1090/tran/7573
[22] Jones, BW, A second variation on a problem of Diophantus and Davenport, Fibonacci Q., 16, 155-165 (1978) · Zbl 0382.10011
[23] Lee, JB; Park, J., Some conditions on the form of third element from Diophantine pairs and its application, J. Korean Math. Soc., 55, 425-445 (2018) · Zbl 1437.11045
[24] Matthews, K.: Solving the diophantine equation \(ax^2-by^2=c\), using the LMM method. http://www.numbertheory.org/php/aa.html
[25] Rickert, JH, Simultaneous rational approximations and related Diophantine equations, Proc. Camb. Philos. Soc., 113, 461-472 (1993) · Zbl 0786.11040 · doi:10.1017/S0305004100076118
[26] The PARI Group: PARI/GP, version 2.9.2, Bordeaux (2017) http://pari.math.u-bordeaux.fr/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.