×

There is no Diophantine quintuple. (English) Zbl 1430.11044

Summary: A set of \(m\) positive integers \(\{a_1, a_2, \ldots , a_m\}\) is called a Diophantine \(m\)-tuple if \( a_i a_j + 1\) is a perfect square for all \(1 \le i < j \le m\). Dujella proved that there is no Diophantine sextuple and that there are at most finitely many Diophantine quintuples. In particular, a folklore conjecture concerning Diophantine \(m\)-tuples states that no Diophantine quintuple exists at all. We prove this conjecture.

MSC:

11D09 Quadratic and bilinear Diophantine equations
11J86 Linear forms in logarithms; Baker’s method
11Y50 Computer solution of Diophantine equations
11J68 Approximation to algebraic numbers

References:

[1] Arkin, Joseph; Hoggatt, V. E., Jr.; Strauss, E. G., On Euler’s solution of a problem of Diophantus, Fibonacci Quart., 17, 4, 333-339 (1979) · Zbl 0418.10021
[2] Baker, A.; Davenport, H., The equations \(3x^2-2=y^2\) and \(8x^2-7=z^2\), Quart. J. Math. Oxford Ser. (2), 20, 129-137 (1969) · Zbl 0177.06802 · doi:10.1093/qmath/20.1.129
[3] Bennett, M. A.; Gy\H ory, K.; Mignotte, M.; Pint\'er, \'A., Binomial Thue equations and polynomial powers, Compos. Math., 142, 5, 1103-1121 (2006) · Zbl 1126.11018 · doi:10.1112/S0010437X06002181
[4] Bugeaud, Yann; Dujella, Andrej; Mignotte, Maurice, On the family of Diophantine triples \(\{k-1,k+1,16k^3-4k\} \), Glasg. Math. J., 49, 2, 333-344 (2007) · Zbl 1168.11007 · doi:10.1017/S0017089507003564
[5] Bugeaud, Yann; Mignotte, Maurice; Siksek, Samir, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2), 163, 3, 969-1018 (2006) · Zbl 1113.11021 · doi:10.4007/annals.2006.163.969
[6] Bugeaud, Yann; Mignotte, Maurice; Siksek, Samir, Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue-Nagell equation, Compos. Math., 142, 1, 31-62 (2006) · Zbl 1128.11013 · doi:10.1112/S0010437X05001739
[7] Cipu, Mihai, Further remarks on Diophantine quintuples, Acta Arith., 168, 3, 201-219 (2015) · Zbl 1347.11028 · doi:10.4064/aa168-3-1
[8] Cipu, Mihai; Filipin, Alan; Fujita, Yasutsugu, Bounds for Diophantine quintuples II, Publ. Math. Debrecen, 88, 1-2, 59-78 (2016) · Zbl 1363.11048 · doi:10.5486/PMD.2015.7257
[9] Cipu, Mihai; Fujita, Yasutsugu, Bounds for Diophantine quintuples, Glas. Mat. Ser. III, 50(70), 1, 25-34 (2015) · Zbl 1364.11078 · doi:10.3336/gm.50.1.03
[10] Cipu, Mihai; Trudgian, Tim, Searching for Diophantine quintuples, Acta Arith., 173, 4, 365-382 (2016) · Zbl 1402.11047
[11] Dickson, Leonard Eugene, History of the theory of numbers. Vol. I: Divisibility and primality, xii+486 pp. (1966), Chelsea Publishing Co., New York · Zbl 0958.11500
[12] Diophantus Diophantus of Alexandria, Arithmetics and the book of polygonal numbers, edited by I. G. Bashmakova, Nauka, Moscow, 1974 (in Russian), pp. 103-104, 232.
[13] Dujella, Andrej, The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen, 51, 3-4, 311-322 (1997) · Zbl 0903.11010
[14] Dujella, Andrej, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc., 127, 7, 1999-2005 (1999) · Zbl 0937.11011 · doi:10.1090/S0002-9939-99-04875-3
[15] Dujella, Andrej, An absolute bound for the size of Diophantine \(m\)-tuples, J. Number Theory, 89, 1, 126-150 (2001) · Zbl 1010.11019 · doi:10.1006/jnth.2000.2627
[16] Dujella, Andrej, There are only finitely many Diophantine quintuples, J. Reine Angew. Math., 566, 183-214 (2004) · Zbl 1037.11019 · doi:10.1515/crll.2004.003
[17] Dujella, Andrej, What is \(\ldots\) a Diophantine \(m\)-tuple?, Notices Amer. Math. Soc., 63, 7, 772-774 (2016) · Zbl 1352.11032 · doi:10.1090/noti1404
[18] Dujella:HP A. Dujella, Diophantine \(m\)-tuples. Available at http://web.math.hr/ duje/dtuples.html. · Zbl 1046.11034
[19] Dujella, Andrej; Peth\H o, Attila, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2), 49, 195, 291-306 (1998) · Zbl 0911.11018 · doi:10.1093/qjmath/49.195.291
[20] Elsholtz, Christian; Filipin, Alan; Fujita, Yasutsugu, On Diophantine quintuples and \(D(-1)\)-quadruples, Monatsh. Math., 175, 2, 227-239 (2014) · Zbl 1347.11030 · doi:10.1007/s00605-013-0571-5
[21] Filipin, Alan; Fujita, Yasutsugu, The number of Diophantine quintuples II, Publ. Math. Debrecen, 82, 2, 293-308 (2013) · Zbl 1289.11031 · doi:10.5486/PMD.2013.5200
[22] Filipin, Alan; Fujita, Yasutsugu; Togb\'e, Alain, The extendibility of Diophantine pairs I: The general case, Glas. Mat. Ser. III, 49(69), 1, 25-36 (2014) · Zbl 1308.11034 · doi:10.3336/gm.49.1.03
[23] Filipin, Alan; Fujita, Yasutsugu; Togb\'e, Alain, The extendibility of Diophantine pairs II: Examples, J. Number Theory, 145, 604-631 (2014) · Zbl 1308.11033 · doi:10.1016/j.jnt.2014.06.020
[24] Fujita, Yasutsugu, The extensibility of Diophantine pairs \(\{k-1,k+1\} \), J. Number Theory, 128, 2, 322-353 (2008) · Zbl 1151.11015 · doi:10.1016/j.jnt.2007.03.013
[25] Fujita, Yasutsugu, Any Diophantine quintuple contains a regular Diophantine quadruple, J. Number Theory, 129, 7, 1678-1697 (2009) · Zbl 1218.11031 · doi:10.1016/j.jnt.2009.01.001
[26] Fujita, Yasutsugu, The number of Diophantine quintuples, Glas. Mat. Ser. III, 45(65), 1, 15-29 (2010) · Zbl 1211.11040 · doi:10.3336/gm.45.1.02
[27] Fujita, Yasutsugu; Miyazaki, Takafumi, The regularity of Diophantine quadruples, Trans. Amer. Math. Soc., 370, 3803-3831 (2018) · Zbl 1417.11024
[28] HPST B. He, K. Pu, R. Shen, and A. Togb\'e, A note on the regularity of the Diophantine pair \(\k,4k\pm 4\ \), J. Th\' eor. Nombres Bordeaux (to appear). · Zbl 1446.11050
[29] He, Bo; Togb\'e, Alain, On the family of Diophantine triples \(\{k+1,4k,9k+3\} \), Period. Math. Hungar., 58, 1, 59-70 (2009) · Zbl 1199.11075 · doi:10.1007/s10998-009-9059-6
[30] He, B.; Togb\'e, A., On a family of Diophantine triples \(\{k,A^2k+2A,(A+1)^2k+2(A+1)\}\) with two parameters, Acta Math. Hungar., 124, 1-2, 99-113 (2009) · Zbl 1199.11074 · doi:10.1007/s10474-009-8155-5
[31] He, Bo; Togb\'e, Alain, On a family of Diophantine triples \(\{k,A^2k+2A,(A+1)^2k+2(A+1)\}\) with two parameters II, Period. Math. Hungar., 64, 1, 1-10 (2012) · Zbl 1265.11054 · doi:10.1007/s10998-012-9001-z
[32] He, Bo; Pint\'er, \'Akos; Togb\'e, Alain; Yang, Shichun, Another generalization of a theorem of Baker and Davenport, J. Number Theory, 182, 325-343 (2018) · Zbl 1430.11043 · doi:10.1016/j.jnt.2017.07.003
[33] Jones, Burton W., A second variation on a problem of Diophantus and Davenport, Fibonacci Quart., 16, 2, 155-165 (1978) · Zbl 0382.10011
[34] Laurent, Michel, Linear forms in two logarithms and interpolation determinants. II, Acta Arith., 133, 4, 325-348 (2008) · Zbl 1215.11074 · doi:10.4064/aa133-4-3
[35] Martin, Greg; Sitar, Scott, Erd\H os-Tur\'an with a moving target, equidistribution of roots of reducible quadratics, and Diophantine quadruples, Mathematika, 57, 1, 1-29 (2011) · Zbl 1225.11036 · doi:10.1112/S0025579310001580
[36] Matveev, E. M., An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat.. Izv. Math., 64 64, 6, 1217-1269 (2000) · Zbl 1013.11043 · doi:10.1070/IM2000v064n06ABEH000314
[37] Mignotte:kit M. Mignotte, A kit on linear forms in three logarithms, Private communication, 2011. · Zbl 1198.11071
[38] Nagell, Trygve, Introduction to Number Theory, 309 pp. (1951), John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm · Zbl 0042.26702
[39] Trudgian, Tim, Bounds on the number of Diophantine quintuples, J. Number Theory, 157, 233-249 (2015) · Zbl 1367.11036 · doi:10.1016/j.jnt.2015.05.004
[40] Wu, Wenquan; He, Bo, On Diophantine quintuple conjecture, Proc. Japan Acad. Ser. A Math. Sci., 90, 6, 84-86 (2014) · Zbl 1307.11039 · doi:10.3792/pjaa.90.84
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.