×

Evolutionarily stable strategies to overcome Allee effect in predator-prey interaction. (English) Zbl 1542.92101

MSC:

92D25 Population dynamics (general)
92D15 Problems related to evolution
92D40 Ecology
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI

References:

[1] Yang, Y.; Ma, C.; Zu, J., Coevolutionary dynamics of host-pathogen interaction with density-dependent mortality, J. Math. Biol., 85, 15 (2022) · Zbl 1497.92183 · doi:10.1007/s00285-022-01782-8
[2] Lewis, M. A.; Kareiva, P., Allee dynamics and the spread of invading organisms, Theor. Popul. Biol., 43, 141-158 (1993) · Zbl 0769.92025 · doi:10.1006/tpbi.1993.1007
[3] Dennis, B., Allee effects: Population growth, critical density, and the chance of extinction, Nat. Resour. Model., 3, 481-538 (1989) · Zbl 0850.92062 · doi:10.1111/j.1939-7445.1989.tb00119.x
[4] Stephens, P. A.; Sutherland, W. J., Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol. Evol., 14, 401-405 (1999) · doi:10.1016/S0169-5347(99)01684-5
[5] Aguirre, P.; Gonzalez-Olivares, E.; Sáez, E., Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect, Nonlinear Anal.: Real World Appl., 10, 1401-1416 (2009) · Zbl 1160.92038 · doi:10.1016/j.nonrwa.2008.01.022
[6] Wang, J.; Shi, J.; Wei, J., Predator-prey system with strong Allee effect in prey, J. Math. Biol., 62, 291-331 (2011) · Zbl 1232.92076 · doi:10.1007/s00285-010-0332-1
[7] Sen, M.; Banerjee, M.; Morozov, A., Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect, Ecol. Complex., 11, 12-27 (2012) · doi:10.1016/j.ecocom.2012.01.002
[8] Mandal, S.; Al Basir, F.; Ray, S., Additive Allee effect of top predator in a mathematical model of three species food chain, Energy, Ecol. Environ., 6, 451-461 (2021) · doi:10.1007/s40974-020-00200-3
[9] Zhou, S.-R.; Liu, Y.-F.; Wang, G., The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67, 23-31 (2005) · Zbl 1072.92060 · doi:10.1016/j.tpb.2004.06.007
[10] Courchamp, F.; Berec, L.; Gascoigne, J., Allee Effects in Ecology and Conservation (2008), OUP Oxford
[11] Gascoigne, J.; Berec, L.; Gregory, S.; Courchamp, F., Dangerously few liaisons: A review of mate-finding Allee effects, Popul. Ecol., 51, 355-372 (2009) · doi:10.1007/s10144-009-0146-4
[12] Cortez, M. H.; Ellner, S. P., Understanding rapid evolution in predator-prey interactions using the theory of fast-slow dynamical systems, Am. Nat., 176, E109-E127 (2010) · doi:10.1086/656485
[13] Nag Chowdhury, S.; Kundu, S.; Banerjee, J.; Perc, M.; Ghosh, D., Eco-evolutionary dynamics of cooperation in the presence of policing, J. Theor. Biol., 518, 110606 (2021) · Zbl 1460.92235 · doi:10.1016/j.jtbi.2021.110606
[14] Roy, S.; Nag Chowdhury, S.; Mali, P. C.; Perc, M.; Ghosh, D., Eco-evolutionary dynamics of multigames with mutations, PLoS One, 17, e0272719 (2022) · doi:10.1371/journal.pone.0272719
[15] Maynard Smith, J., On Evolution (1972), Edinburgh University Press
[16] Hamilton, W. D., Extraordinary sex ratios: A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology, Science, 156, 477-488 (1967) · doi:10.1126/science.156.3774.477
[17] Lawlor, L. R.; Smith, J. M., The coevolution and stability of competing species, Am. Nat., 110, 79-99 (1976) · doi:10.1086/283049
[18] Mandal, A.; Tiwari, P. K.; Samanta, S.; Venturino, E.; Pal, S., A nonautonomous model for the effect of environmental toxins on plankton dynamics, Nonlinear Dyn., 99, 3373-3405 (2020) · Zbl 1434.37051 · doi:10.1007/s11071-020-05480-2
[19] Mandal, A.; Tiwari, P. K.; Pal, S., A nonautonomous model for the effects of refuge and additional food on the dynamics of phytoplankton-zooplankton system, Ecol. Complex., 46, 100927 (2021) · doi:10.1016/j.ecocom.2021.100927
[20] Biswas, S.; Tiwari, P. K.; Bona, F.; Pal, S.; Venturino, E., Modeling the avoidance behavior of zooplankton on phytoplankton infected by free viruses, J. Biol. Phys., 46, 1-31 (2020) · doi:10.1007/s10867-020-09538-5
[21] Biswas, S.; Tiwari, P. K.; Pal, S., Delay-induced chaos and its possible control in a seasonally forced eco-epidemiological model with fear effect and predator switching, Nonlinear Dyn., 104, 2901-2930 (2021) · doi:10.1007/s11071-021-06396-1
[22] Mandal, A.; Biswas, S.; Pal, S., Toxicity-mediated regime shifts in a contaminated nutrient-plankton system, Chaos, 33, 2, 023106 (2023) · Zbl 07881233 · doi:10.1063/5.0122206
[23] Biswas, S.; Mandal, A., Cooperation-mediated regime shifts in a disease-dominated prey-predator system, Chaos, Solitons Fractals, 170, 113352 (2023) · doi:10.1016/j.chaos.2023.113352
[24] Franović, I.; Omel’chenko, O. E.; Wolfrum, M., Phase-sensitive excitability of a limit cycle, Chaos, 28, 071105 (2018) · Zbl 1396.34028 · doi:10.1063/1.5045179
[25] Bačić, I.; Klinshov, V.; Nekorkin, V.; Perc, M.; Franović, I., Inverse stochastic resonance in a system of excitable active rotators with adaptive coupling, Europhys. Lett., 124, 40004 (2018) · doi:10.1209/0295-5075/124/40004
[26] Zhou, S.; Ji, P.; Zhou, Q.; Feng, J.; Kurths, J.; Lin, W., Adaptive elimination of synchronization in coupled oscillator, New J. Phys., 19, 083004 (2017) · Zbl 1516.34094 · doi:10.1088/1367-2630/aa7bde
[27] Ghosh, S.; Mondal, A.; Ji, P.; Mishra, A.; Dana, S. K.; Antonopoulos, C. G.; Hens, C., Emergence of mixed mode oscillations in random networks of diverse excitable neurons: The role of neighbors and electrical coupling, Front. Comput. Neurosci., 14, 49 (2020) · doi:10.3389/fncom.2020.00049
[28] Uzuntarla, M.; Barreto, E.; Torres, J. J., Inverse stochastic resonance in networks of spiking neurons, PLoS Comput. Biol., 13, e1005646 (2017) · doi:10.1371/journal.pcbi.1005646
[29] Palabas, T.; Longtin, A.; Ghosh, D.; Uzuntarla, M., Controlling the spontaneous firing behavior of a neuron with astrocyte, Chaos, 32, 051101 (2022) · doi:10.1063/5.0093234
[30] Abrams, P. A.; Matsuda, H.; Harada, Y., Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits, Evol. Ecol., 7, 465-487 (1993) · doi:10.1007/BF01237642
[31] Marrow, P.; Dieckmann, U.; Law, R., Evolutionary dynamics of predator-prey systems: An ecological perspective, J. Math. Biol., 34, 556-578 (1996) · Zbl 0845.92018 · doi:10.1007/BF02409750
[32] Kot, M., Elements of Mathematical Ecology (2001), Cambridge University Press
[33] Wang, X.; Zanette, L.; Zou, X., Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73, 1179-1204 (2016) · Zbl 1358.34058 · doi:10.1007/s00285-016-0989-1
[34] Zu, J.; Mimura, M., The impact of Allee effect on a predator-prey system with Holling type II functional response, Appl. Math. Comput., 217, 3542-3556 (2010) · Zbl 1202.92088 · doi:10.1016/j.amc.2010.09.029
[35] Reed, J.; Stenseth, N. C., On evolutionarily stable strategies, J. Theor. Biol., 108, 491-508 (1984) · doi:10.1016/S0022-5193(84)80075-2
[36] Mitra, C.; Choudhary, A.; Sinha, S.; Kurths, J.; Donner, R. V., Multiple-node basin stability in complex dynamical networks, Phys. Rev. E, 95, 032317 (2017) · doi:10.1103/PhysRevE.95.032317
[37] Ji, P.; Lin, W.; Kurths, J., Asymptotic scaling describing signal propagation in complex networks, Nat. Phys., 16, 1082-1083 (2020) · doi:10.1038/s41567-020-1025-3
[38] Bao, X.; Hu, Q.; Ji, P.; Lin, W.; Kurths, J.; Nagler, J., Impact of basic network motifs on the collective response to perturbations, Nat. Commun., 13, 5301 (2022) · doi:10.1038/s41467-022-32913-w
[39] Grunert, K.; Holden, H.; Jakobsen, E. R.; Stenseth, N. C., Evolutionarily stable strategies in stable and periodically fluctuating populations: The Rosenzweig-Macarthur predator-prey model, Proc. Natl. Acad. Sci. U.S.A., 118, e2017463118 (2021) · Zbl 1485.92087 · doi:10.1073/pnas.2017463118
[40] Sasmal, S. K.; Ghosh, D., Effect of dispersal in two-patch prey-predator system with positive density dependence growth of preys, Biosystems, 151, 8-20 (2017) · doi:10.1016/j.biosystems.2016.11.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.