×

Maier’s matrix method and irregularities in the distribution of prime numbers. (English) Zbl 1503.11124

Pintz, János (ed.) et al., Irregularities in the distribution of prime numbers. From the era of Helmut Maier’s matrix method and beyond. Cham: Springer. 165-186 (2018).
Summary: This paper is devoted to irregularities in the distribution of prime numbers. We describe the development of this theory and the relation to Maier’s matrix method.
For the entire collection see [Zbl 1397.11003].

MSC:

11N25 Distribution of integers with specified multiplicative constraints
11N37 Asymptotic results on arithmetic functions
Full Text: DOI

References:

[1] A. Balog, T.D. Wooley, Sums of two squares in short intervals. Can. J. Math. 52(4), 673-694 (2000) · Zbl 0961.11030 · doi:10.4153/CJM-2000-029-6
[2] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 2, 396-403 (1936) · JFM 62.1147.01 · doi:10.4064/aa-2-1-23-46
[3] P.D.T.A. Elliott, H. Halberstam, A conjecture in prime number theory. Symp. Math. 4, 59-72 (1968) · Zbl 0238.10030
[4] P. Erdős, On the difference of consecutive primes. Q. J. Oxf. 6, 124-128 (1935) · JFM 61.0134.03
[5] J. Friedlander, A. Granville, Limitations to the equidistribution of primes I. Ann. Math. 129, 363-382 (1989) · Zbl 0671.10041 · doi:10.2307/1971450
[6] J. Friedlander, A. Granville, Limitations to the equidistribution of primes IV. Proc. R. Soc. Lond. Ser. A 435, 197-204 (1991) · Zbl 0736.11049 · doi:10.1098/rspa.1991.0138
[7] J. Friedlander, A. Granville, A. Hildebrand, H. Maier, Oscillation theorems for primes in arithmetic progressions and for sifting functions. J. AMS 4(1), 25-86 (1991) · Zbl 0724.11040
[8] P.X. Gallagher, A large sieve density estimate near σ = 1. Invent. Math. 11, 329-339 (1970) · Zbl 0219.10048 · doi:10.1007/BF01403187
[9] A. Granville, Unexpected irregularities in the distribution of prime numbers, in Proceedings of the International Congress of Mathematicians, Zürich (1994), pp. 388-399 · Zbl 0843.11043
[10] A. Granville, K. Soundararajan, An uncertainty principle for arithmetic sequences. Ann. Math. 165, 593-635 (2007) · Zbl 1139.11040 · doi:10.4007/annals.2007.165.593
[11] A. Hildebrand, H. Maier, Irregularities in the distribution of primes in short intervals. J. Reine Angew. Math. 397, 162-193 (1989) · Zbl 0658.10048
[12] H. Iwaniec, The sieve of Eratosthenes-Legendre. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4(4), 257-268 (1977) · Zbl 0346.10029
[13] H. Maier, Chains of large gaps between consecutive primes. Adv. Math. 39, 257-269 (1981) · Zbl 0457.10023 · doi:10.1016/0001-8708(81)90003-7
[14] H. Maier, Primes in short intervals. Mich. Math. J. 32(2), 221-225 (1985) · Zbl 0569.10023 · doi:10.1307/mmj/1029003189
[15] K. Monks, S. Peluse, L. Ye, Strings of special primes in arithmetic progressions (English summary). Arch. Math. (Basel) 101(3), 219-234 (2013) · Zbl 1327.11061 · doi:10.1007/s00013-013-0544-x
[16] H.L. Montgomery, Topics in Multiplicative Number Theory. Lecture Notes in Mathematics, vol. 227 (Springer, New York, 1971) · Zbl 0216.03501 · doi:10.1007/BFb0060851
[17] H.L. Montgomery, Problems concerning prime numbers. Proc. Symp. Pure Math. 28, 307-310 (1976) · Zbl 0342.10019 · doi:10.1090/pspum/028.1/0427249
[18] A. Nair, A. Perelli, On the prime ideal theorem and irregularities in the distribution of primes. Duke Math. J. 77, 1-20 (1995) · Zbl 0818.11035 · doi:10.1215/S0012-7094-95-07701-1
[19] R.A. Rankin, The difference between consecutive prime numbers. J. Lond. Math. Soc. 13, 242-247 (1938) · Zbl 0019.39403 · doi:10.1112/jlms/s1-13.4.242
[20] M. Rosen, Number Theory in Function Fields. Graduate Texts in Mathematics, vol. 210 (Springer, New York, 2002) · Zbl 1043.11079
[21] D.K.L. Shiu, Strings of congruent primes. J. Lond. Math. Soc. 61(2), 359-373 (2000) · Zbl 0973.11083 · doi:10.1112/S0024610799007863
[22] F. Thorne, Irregularities in the distribution of primes in function fields. J. Number Theory 128(6), 1784-1794 (2008) · Zbl 1156.11039 · doi:10.1016/j.jnt.2007.08.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.