×

On the prime ideal theorem and irregularities in the distribution of primes. (English) Zbl 0818.11035

For any fixed \(k\in \mathbb{N}\), let \(f(x)\) denote the polynomial \(x^ k+ Qd\) with \(Q,d\in \mathbb{N}\). Put, for fixed \(Q\) and prime \(p\), \[ \rho(d,p)= |\{m \bmod p;\;m^ k+ Qd\equiv 0\bmod p\}|. \] We factorize \(f\) over \(\mathbb{Q}\) as \(f= \prod_{i=1}^{r(d)} f_ i\), where each \(f_ i\) is irreducible and has integral coefficients, then the prime ideal theorem implies that \(\sum_{p\leq x} \rho(d, p)\sim r(d)\cdot \text{li } x\), \(x\to \infty\). In the present paper the authors derive the upper bound \[ \sum_{Y\leq d\leq Y+H} \;\biggl| \sum_{X\leq p\leq 2X} (\rho(d, p)- r(d)) \biggr| \ll_{A,k, \varepsilon} {{X\cdot H} \over {\log^ A X}} \] uniformly for \(Q\leq Y^ A\), \(A>0\), provided that \(Y^{(1/2)+ \varepsilon} \leq H\leq Y\), \(\varepsilon>0\). This result has an interesting application concerning a theorem of Friedlander-Granville [J. Friedlander and A. Granville, Proc. R. Soc. Lond., Ser. A 435, 197-204 (1991; Zbl 0736.11049)] on irregularities in the distribution of primes represented by polynomials.
Reviewer: J.Hinz (Marburg)

MSC:

11N32 Primes represented by polynomials; other multiplicative structures of polynomial values
11R42 Zeta functions and \(L\)-functions of number fields

Citations:

Zbl 0736.11049
Full Text: DOI

References:

[1] P. T. Bateman and R. A. Horn, Primes represented by irreducible polynomials in one variable , Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 119-132. · Zbl 0136.32902
[2] R. Brauer, On the zeta-functions of algebraic number fields , Amer. J. Math. 69 (1947), 243-250. JSTOR: · Zbl 0029.01502 · doi:10.2307/2371849
[3] H. Davenport, Multiplicative Number Theory , 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, Berlin, 1980. · Zbl 0453.10002
[4] J. Friedlander and A. Granville, Limitations to the equi-distribution of primes I , Ann. of Math. (2) 129 (1989), no. 2, 363-382. JSTOR: · Zbl 0671.10041 · doi:10.2307/1971450
[5] J. Friedlander and A. Granville, Limitations to the equi-distribution of primes IV , Proc. Roy. Soc. London Ser. A 435 (1991), no. 1893, 197-204. JSTOR: · Zbl 0736.11049 · doi:10.1098/rspa.1991.0138
[6] P. X. Gallagher, A large sieve density estimate near \(\sigma =1\) , Invent. Math. 11 (1970), 329-339. · Zbl 0219.10048 · doi:10.1007/BF01403187
[7] H. Halberstam and H.-E. Richert, Sieve Methods , Academic Press, New York, 1974. · Zbl 0298.10026
[8] G. H. Hardy and J. E. Littlewood, Some problems of partitio numerorum. III. On the expression of a number as a sum of primes , Acta Math. 44 (1923), 1-70. · JFM 48.0143.04 · doi:10.1007/BF02403921
[9] H. Heilbronn, On real zeros of Dedekind \(\zeta\)-functions , Canad. J. Math. 25 (1973), 870-873. · Zbl 0272.12010 · doi:10.4153/CJM-1973-090-3
[10] H. Maier, Primes in short intervals , Michigan Math. J. 32 (1985), no. 2, 221-225. · Zbl 0569.10023 · doi:10.1307/mmj/1029003189
[11] M. Nair and A. Perelli, Sieve methods and class-number problems I , J. Reine Angew. Math. 367 (1986), 11-26. · Zbl 0588.10053
[12] R. C. Vaughan, The Hardy-Littlewood Method , Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, Cambridge, 1981. · Zbl 0455.10034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.