×

Travelling wave solutions of Wu-Zhang system via dynamic analysis. (English) Zbl 1459.35338

Summary: In this paper, based on the dynamical system method, we obtain the exact parametric expressions of the travelling wave solutions of the Wu-Zhang system. Our approach is much different from the existing literature studies on the Wu-Zhang system. Moreover, we also study the fractional derivative of the Wu-Zhang system. Finally, by comparison between the integer-order Wu-Zhang system and the fractional-order Wu-Zhang system, we see that the phase portrait, nonzero equilibrium points, and the corresponding exact travelling wave solutions all depend on the derivative order \(\alpha \). Phase portraits and simulations are given to show the validity of the obtained solutions.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C07 Traveling wave solutions
35C08 Soliton solutions

References:

[1] Attia, R. A. M.; Lu, D.; Ak, T.; Khater, M. M. A., Optical wave solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term via modified Khater method, Modern Physics Letters B, 34, 5 (2020) · doi:10.1142/s021798492050044x
[2] Chen, S.; Ma, W., Exact solutions to a generalized Bogoyavlensky-Konopelchenko equation via Maple symbolic computations, Complexity, 2019 (2019) · Zbl 1417.35167 · doi:10.1155/2019/8787460
[3] Fan, E.; Zhang, H., New exact solutions to a system of coupled kdV equations, Physics Letters A, 245, 5, 389-392 (1998) · Zbl 0947.35126 · doi:10.1016/s0375-9601(98)00464-2
[4] Khater, M. M. A.; Attia, R. A. M.; Abdel-Aty, A.-H.; Abdou, M. A.; Eleuch, H.; Lu, D., Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term, Results in Physics, 16 (2020) · doi:10.1016/j.rinp.2020.103000
[5] Khater, M.; Attia, R.; Baleanu, D., Abundant new solutions of the transmission of nerve impulses of an excitable system, The European Physical Journal Plus, 135, 2, 1-12 (2020) · doi:10.1140/epjp/s13360-020-00261-7
[6] Khater, M. M. A.; Park, C.; Abdel-Aty, A. -H; Attia, R. A. M.; Lu, D., On new computational and numerical solutions of the modified Zakharov‐Kuznetsov equation arising in electrical engineering, Alexandria Engineering Journal, 59, 3, 1099-1105 (2020) · doi:10.1016/j.aej.2019.12.043
[7] Khater, M.; Park, C.; Lu, D.; Attia, R., Analytical, semi-analytical, and numerical solutions for the Cahn-Allen equation, Advances in Difference Equations, 2020, 1, 1-12 (2020) · Zbl 1487.35409 · doi:10.1186/s13662-019-2475-8
[8] Khater, M. M. A.; Seadawy, A. R.; Lu, D., Optical soliton and rogue wave solutions of the ultra-short femto-second pulses in an optical fiber via two different methods and its applications, Optik, 158, 434-450 (2018) · doi:10.1016/j.ijleo.2017.12.120
[9] Khater, M.; Seadawy, A.; Lu, D., Optical soliton and bright-dark solitary wave solutions of nonlinear complex Kundu-Eckhaus dynamical equation of the ultra-short femtosecond pulses in an optical fiber, Optical and Quantum Electronics, 50, 3, 155 (2018) · doi:10.1007/s11082-018-1423-2
[10] Li, J.; Attia, R. A. M.; Khater, M. M. A.; Lu, D., The new structure of analytical and semi-analytical solutions of the longitudinal plasma wave equation in a magneto-electro-elastic circular rod, Modern Physics Letters B, 34, 12 (2020) · doi:10.1142/s0217984920501237
[11] Ma, W.-X.; Liu, Y., Invariant subspaces and exact solutions of a class of dispersive evolution equations, Communications in Nonlinear Science and Numerical Simulation, 17, 10, 3795-3801 (2012) · Zbl 1250.35057 · doi:10.1016/j.cnsns.2012.02.024
[12] Park, C.; Khater, M. M. A.; Attia, R. A. M.; Alharbi, W.; Alodhaibi, S. S., An explicit plethora of solution for the fractional nonlinear model of the low‐pass electrical transmission lines via Atangana‐Baleanu derivative operator, Alexandria Engineering Journal, 59, 3, 1205-1214 (2020) · doi:10.1016/j.aej.2020.01.044
[13] Wazwaz, A.-M., The tanh method for travelling wave solutions to the Zhiber-Shabat equation and other related equations, Communications in Nonlinear Science and Numerical Simulation, 13, 3, 584-592 (2008) · Zbl 1155.35446 · doi:10.1016/j.cnsns.2006.06.014
[14] Wazwaz, A.-M., The variable separated ODE and the tanh methods for solving the combined and the double combined sinh-cosh-Gordon equations, Applied Mathematics and Computation, 177, 2, 745-754 (2006) · Zbl 1096.65104 · doi:10.1016/j.amc.2005.09.101
[15] Wu, T.; Zhang, J.; Cook, L. P.; Roytbhurd, V.; Tulin, M., On modeling nonlinear long wave, Mathematics Is for Solving Problems, 233 (1996), Philadelphia, PA, USA: SIAM, Philadelphia, PA, USA
[16] Eslami, M.; Rezazadeh, H., The first integral method for Wu-Zhang system with conformable time-fractional derivative, Calcolo, 53, 3, 1-11 (2015) · Zbl 1434.35273 · doi:10.1007/s10092-015-0158-8
[17] Fan, E., Extended tanh-function method and its applications to nonlinear equations, Physics Letters A, 277, 4-5, 212-218 (2000) · Zbl 1167.35331 · doi:10.1016/s0375-9601(00)00725-8
[18] Helal, M. M.; Mekky, M. L.; Mohamed, E. A., The characteristic function method and its application to (1 + 1)-dimensional dispersive long wave equation, Applied Mathematics, 3, 1, 12-18 (2012) · doi:10.4236/am.2012.31002
[19] Chen, C.; Tang, X.; Lou, S., Solutions of a (2 + 1)-dimensional dispersive long wave equation, Physical Review E, 66, 3 (2002) · doi:10.1103/physreve.66.036605
[20] Pickering, A., A new truncation in Painleve analysis, Journal of Physics A: Mathematical and General, 26, 17, 4395-4405 (1993) · Zbl 0803.35131 · doi:10.1088/0305-4470/26/17/044
[21] Weiss, J.; Tabor, M.; Carnevale, G., The Painlevé property for partial differential equations, Journal of Mathematical Physics, 24, 3, 522-526 (1983) · Zbl 0514.35083 · doi:10.1063/1.525721
[22] Wang, Q.; Chen, Y.; Hongqing, Z., A new Jacobi elliptic function rational expansion method and its application to (1 + 1)-dimensional dispersive long wave equation, Chaos, Solitons & Fractals, 23, 2, 477-483 (2005) · Zbl 1072.35510 · doi:10.1016/j.chaos.2004.04.029
[23] Zheng, X.; Chen, Y.; Zhang, H., Generalized extended tanh-function method and its application to (1 + 1)-dimensional dispersive long wave equation, Physics Letters A, 311, 2-3, 145-157 (2003) · Zbl 1019.35059 · doi:10.1016/s0375-9601(03)00451-1
[24] Zeng, X.; Wang, D.-S., A generalized extended rational expansion method and its application to (1 + 1)-dimensional dispersive long wave equation, Applied Mathematics and Computation, 212, 2, 296-304 (2009) · Zbl 1166.65387 · doi:10.1016/j.amc.2009.02.020
[25] Du, Z.; Li, J.; Li, X., The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, Journal of Functional Analysis, 275, 4, 988-1007 (2018) · Zbl 1392.35223 · doi:10.1016/j.jfa.2018.05.005
[26] Du, Z.; Feng, Z.; Feng, Z., Existence and asymptotic behaviors of traveling waves of a modified vector-disease model, Communications on Pure & Applied Analysis, 17, 5, 1899-1920 (2018) · Zbl 1397.35314 · doi:10.3934/cpaa.2018090
[27] Feng, D.; Li, J.; Jiao, J., Dynamical behavior of singular traveling waves of (n + 1)-dimensional nonlinear Klein-Gordon equation, Qualitative Theory of Dynamical Systems, 18, 1, 265-287 (2019) · Zbl 1418.34089 · doi:10.1007/s12346-018-0285-0
[28] He, B.; Meng, Q., Bifurcations and new exact travelling wave solutions for the Gerdjikov-Ivanov equation, Communications in Nonlinear Science and Numerical Simulation, 15, 7, 1783-1790 (2010) · Zbl 1222.35184 · doi:10.1016/j.cnsns.2009.07.019
[29] Liu, H.; Li, J., Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations, Journal of Computational and Applied Mathematics, 257, 144-156 (2014) · Zbl 1302.37034 · doi:10.1016/j.cam.2013.08.022
[30] Liu, H.; Li, J., Lie symmetry analysis and exact solutions for the extended mkdV equation, Acta Applicandae Mathematicae, 109, 3, 1107-1119 (2010) · Zbl 1223.37079 · doi:10.1007/s10440-008-9362-8
[31] Song, Y.; Tang, X., Stability, steady-state bifurcations, and turing patterns in a predator-prey model with Herd behavior and prey-taxis, Studies in Applied Mathematics, 139, 3, 371-404 (2017) · Zbl 1373.35324 · doi:10.1111/sapm.12165
[32] Song, Y.; Jiang, H.; Liu, Q.-X.; Yuan, Y., Spatiotemporal dynamics of the diffusive mussel-algae model near turing-hopf bifurcation, SIAM Journal on Applied Dynamical Systems, 16, 4, 2030-2062 (2017) · Zbl 1382.35035 · doi:10.1137/16m1097560
[33] Yi, F.; Wei, J.; Shi, J., Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Analysis: Real World Applications, 9, 3, 1038-1051 (2008) · Zbl 1146.35384 · doi:10.1016/j.nonrwa.2007.02.005
[34] Zhang, T.; Li, J., Exact torus knot periodic orbits and homoclinic orbits in a class of three-dimensional flows generated by a planar cubic system, International Journal of Bifurcation and Chaos, 27, 13, 1-12 (2017) · Zbl 1382.37024 · doi:10.1142/s0218127417502054
[35] Zhang, T.; Li, J., Exact solitons, periodic peakons and compactons in an optical soliton model, Nonlinear Dynamics, 91, 2, 1371-1381 (2018) · Zbl 1390.35350 · doi:10.1007/s11071-017-3950-y
[36] Zhang, B.; Xia, Y.; Zhu, W.; Bai, Y., Explicit exact traveling wave solutions and bifurcations of the generalized combined double sinh-cosh-Gordon equation, Applied Mathematics and Computation, 363, 124576 (2019) · Zbl 1433.35348 · doi:10.1016/j.amc.2019.124576
[37] Zhang, B.; Zhu, W.; Xia, Y.; Bai, Y., A unified analysis of exact traveling wave solutions for the fractional-order and integer-order Biswas-Milovic equation: via bifurcation theory of dynamical system, Qualitative Theory of Dynamical Systems, 19, 1, 11 (2020) · Zbl 1450.34008 · doi:10.1007/s12346-020-00352-x
[38] Zhu, W.; Xia, Y.; Zhang, B.; Bai, Y., Exact traveling wave solutions and bifurcations of the time fractional differential equations with applications, International Journal of Bifurcation and Chaos, 29, 3 (2019) · Zbl 1411.35061 · doi:10.1142/S021812741950041X
[39] Zhu, W.; Xia, Y.; Bai, Y., Traveling wave solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity, Applied Mathematics and Computation, 382 (2020) · Zbl 1508.35171 · doi:10.1016/j.amc.2020.125342
[40] Khater, M. M. A.; Attia, R. A. M.; Lu, D., Numerical solutions of nonlinear fractional Wu-Zhang system for water surface versus three approximate schemes, Journal of Ocean Engineering and Science, 4, 2, 144-148 (2019) · doi:10.1016/j.joes.2019.03.002
[41] Khater, M.; Lu, D.; Attia, R., Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method, AIP Advances, 9, 2 (2019) · doi:10.1063/1.5087647
[42] Li, J., Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions (2013), Beijing, China: Science, Beijing, China
[43] Byrd, P.; Friedman, M., Handbook of Elliptic Integrals for Engineers and Scientists (1971), New York, NY, USA: Springer-Verlag, New York, NY, USA · Zbl 0213.16602
[44] Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M., A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70 (2014) · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.